
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 2

Reliability
The failure of computerized controls in some applications can have catastrophic results. This lecture describes how
faults can cause errors which in turn can lead to failures.
After this lecture you should be able to differentiate between availability and reliability. You should also be a able
to read a description of a system failure and identify and classify the fault, identify the resulting error and describe
strategies for reducing the likelihood of the faults.

Introduction

Computer-controlled systems are used in many ap-
plications where the failure of the control system can
have serious consequences. Such applications are
often found in the fields of transportation (aircraft,
trains) , communication (data and telephone net-
works), weapon systems (radar, missiles), and health
care (therapeutic and monitoring equipment).

The purpose of this lecture is to increase aware-
ness of the consequences of system failure. The anal-
ysis and design of highly-reliable computer control
systems is beyond the scope of this course.

Terminology

Availability is the fraction of time that a system op-
erates correctly. For example, the availability re-
quirement for a telephone switch may be specified
as 99.99999% (unavailable for less than 5 minutes
per year). Availability is normally specified only for
systems that are designed to be repaired.

Reliability is the probability that the device or sys-
tem will operate correctly in a specified situation.
For example, an air traffic control radar may be re-
quired to detect a certain size of plane with a proba-
bility of 99.999%. A manufacturer may specify the
reliability of a system over a given time. For exam-
ple, the manufacturer of a disk drive may guarantee
that the probability of the disk failing in the first 1000
hours of operation is less than 1%.

The following diagram (from Siewiorek and
Swarz, 1992) attempts to classify the relationship be-

tween faults, errors and failures.

A fault is the incorrect operation of part of the sys-
tem (e.g. temperature sensor failure). The error is
the effect of that fault (e.g. heat source left on con-
tinuously). And a failure is the failure of the system
to operate as desired (e.g. a fire or damage).

Causes of Failures

Siewiorek and Swarz (1992)

These authors classify causes of failure in two di-
mensions: the physical location of the failure and
the time during the lifetime of the system when the
failure occurs.

The physical location of the failure might range
from a component (the lowest level) through to the
interconnection of systems (the highest level). In be-
tween are the circuit level, and the software level
where failures can happen. There are different sta-
tistical methods for estimating availability and relia-
bility at each level.

The time at which the failure can be caused

lec16.tex 1



can range from the design stage (the earliest time)
through to operation (the latest time). Failures can
also be introduced during the prototyping, manufac-
turing, and test times.

Neumann (1995)

It’s also possible to classify most faults into a num-
ber of common categories. For example, among the
causes listed in (Neumann 1995) are:

System Analysis - incorrect assumptions or
poor models used in the original system design

Requirements Definition - an important require-
ment left out or incorrectly specified

Design Flaws - errors in the design

Implementation Errors - includes faulty con-
struction, or buggy software

System use - operator errors

Hardware malfunction - hardware failures in the
field

Environmental problems - heat, flooding, etc

Evolution and Maintenance - poorly-tested up-
grades or faulty maintenance

Failure-Prevention Strategies

Having identified possible causes of failures, we
need to develop strategies to minimize their impacts.
Different approaches are used to reduce hardware
and software failures. Table 1 identifies some of the
techniques.

Hardware

Figure 1 summarizes the various strategies used to
reduce the likelihood of hardware failures.

Fault Avoidance includes: conservative design
(operation in a benign (low-temperature, clean
power, etc) environment, use of reliable components,
reduced complexity, etc).

Fault Detection includes: performing the same op-
eration twice and comparing the results, using error-
detecting codes such as parity or CRCs, using timers

to detect hardware (or software) that is not perform-
ing as expected, and detecting accesses to protected
or non-existent memory.

Masking Redundancy includes redundant circuitry
that hides failures. This can include N-module re-
dundancy (NMR) with voting to select the output
that is most likely correct, error-correcting coding
and logic design that uses additional gates to correct
for partial failures.

Dynamic Redundancy includes replacing failed
circuitry with backup circuits. This can include de-
tecting failures and selecting one of N modules, and
designing for reduced performance in the case of
some failures.

Software

The above strategies can also be used to minimize
software failures.

Fault avoidance includes employing good soft-
ware engineering principles such as modularity, data
hiding, sanity checks, regression testing, and bug
tracking.

Fault detection and recovery can involve using
multiple independently-written programs to perform
the same task and methods to recover from errors
once they have been detected.

Readings: Computer System Failures

The handout contains examples taken from Neu-
mann (1995) and includes examples of failures in
the areas of space exploration, trains, control systems
and robotics.

Exercise: Choose several examples that you find interesting.

Try to identify the fault and the resulting error(s). Localize the fault

(level and time) and see if it fits into one of Neumann’s categories.

Identify any of the above fault-reduction strategies might have

helped avoid the failure.

References

Computer Related Risks, Peter G Neumann, ACM
Press, 1995. This is an easy-to-read book that is full
of examples of the risks involved in computer-based
systems. Some of the material isn’t relevant to com-
puter control systems but it’s all interesting.

2



Table 1: Approaches used to reduce hardware and software failures (from Siewiorek and Swarz, 1992).

RISKS-LIST, a “FORUM ON RISKS TO THE
PUBLIC IN COMPUTERS AND RELATED SYS-
TEMS” moderated by the author of the above book
and available in the Usenet newsgroup comp.risks.

Reliable Computer Systems (Second Edition),
Daniel P Siewiorek and Robert W Swarz, Digital
Press, 1992. Is a more technical treatment of com-
puter reliability issues.

3



Figure 1: Strategies used to reduce the likelihood of hardware failures (Siewiorek and Swarz).

4


