
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 2

Logic Design - PAL Implementation
The design of microprocessor systems often requires the design of “glue” logic to interconnect the microprocessor
with peripheral interface chips. This lecture describes logic implementation using a simple programmable logic
device (PLD) called a PAL (Programmable Array Logic).
After this lecture you should be able to use the CUPL logic design language to design a simple PAL-based circuit.

Programmable Logic

The choice of logic implementation technique (stan-
dard logic function ICs, programmable devices or
custom ASICs), will depend on factors such as the
number of units to be built, engineering expertise
available, the available design tools and the time al-
located for the design. Current practice is to use pro-
grammable logic devices (PALs and FPGAs (Field
Programmable Logic Arrays) to implement most
custom logic functions except on very high volume
designs.

There are a wide variety of programmable logic
devices available including PALs, CPLDs (com-
plex programmable logic devices) and FPGAs (field-
programmable logic devices). PALs are limited to
a simple sum-of-products architecture with 8 to 10
inputs and outputs. PALs are widely used to imple-
ment simple combinational logic circuits and state
machines. CPLDs typically include multiple PAL-
like elements in the same chip with programmable
interconnections between them. They often allow
more than one clock input and can implement sev-
eral independent functions. FPGAs typically include
hundreds of very simple logic blocks (e.g. a pro-
grammable 4-bit sum-of-products logic block with a
4-bit register) with very flexible interconnection ar-
rangements. It should be noted that different manu-
facturers have different many interpretations of what
these terms mean. One manufacturer may call a cer-
tain type of device a CPLD and another may call a
similar device an FPGA.

PAL Architecture

Each output on a PAL implements a programmable
sum-of-products function of it’s inputs. The max-
imum number of terms in the sum depends on the
device. For the 16V8 device we will use in the lab

example, there can be up to 8 terms. Each product
term can include any combination of the inputs, the
outputs and their complements.

Registered PALs have D flip-flops on their outputs
with the sum-of-product results driving the inputs to
the flip-flops. This allows registered PALs to imple-
ment arbitrary state machines. Modern PAL devices
can mix registered and combinational outputs.

PALS are thus well suited to implementing the
simple combinational circuits and state machines
that we have seen in previous lectures.

PAL Design

PALs are usually designed using simple logic design
languages that describe the logic function to be per-
formed. An “assembler” then translates this func-
tional specification of the device into a programming
file (“JEDEC” file). This file is then used to program
the device using a device programmer similar to an
EPROM programmer.

Design using CUPL

We will use the CUPL programmable logic language
since it is reasonably popular and a version that sup-
ports the GAL16V8 is available for free. Other pop-
ular “languages” for PLD design include ABEL and
PALASM. FPGAs are usually designed with one the
two more powerful hardware description languages,
VHDL or Verilog. A complete study of CUPL’s fea-
tures would take several lectures so here we will only
cover the minimum subset required for our relatively
simple designs.

The CUPL input file uses the .pld file name suffix
by convention. Comments can be inserted anywhere
in the file using /* and */ delimiters. The input file
contains three sections:

lec13.tex 1

The first section includes a number of statements
to identify the design. The last statement of this sec-
tion gives a code to identify the device we will use.
In this course we will use G16V8. Note that each
statement ends with a semicolon.

The second section of the file uses PIN statements
to assign symbolic names to the input and output
pins. The 16V8 is a 20-pin package with 16 inputs
and 8 outputs (each output is also available as an in-
put). Pins 1 to 9 and 11 are inputs while pins 12 to
19 can be used as inputs or outputs. If an input is to
be used to clock flip-flops it must be on pin 1. Vari-
able names are case sensitive and should begin with
a letter.

The final section gives the logic equations that de-
fine the outputs (or register inputs) as functions of
the inputs. The operators !, &, # and $ correspond
to NOT, AND, OR and XOR. If an output variable
is to be a registered output, the .D extension must be
added to the output variable name so that the expres-
sion applies to the D input of the output flip-flop.

Simulation using CSIM

Since PAL logic design can be error-prone, a simula-
tor is almost always used to test PAL designs without
having to program devices and then put them in a cir-
cuit. The input to the simulator is a description of the
PAL logic (for CUPL this is the .abs file) and a set of
test vectors. Each test vector specifies a set of inputs
to the PAL and the expected outputs. The simulator
compares the expected output to that which would
be produced by the logic described in the .abs file.
The simulator output file notes any discrepancies be-
tween the expected and simulated outputs.

The simulator input file is also divided into three
parts. The first part is the identification section and
is identical to that required for CUPL.

The second part of the file uses the ORDER com-
mand to define the input and output variables that
are to be included in the test vectors and the order
in which they appear in the test vectors and in the
output. As shown in the example, spaces may be
inserted in the simulation output by using a percent
sign followed by the number of spaces.

The VECTORS: line indicates the start of the test
vectors. The test vectors appear with one vector per
line (and no terminating semicolon). The values of

the input variables are specified as 0, 1, X (don’t
care), and C for a low-high-low clock pulse. The
values of the outputs are given as the logic levels H
or L.

CUPL and CSIM Examples

The listings show the CUPL and CSIM input and
output files for a simple sequential logic circuit.

Name Lab4 ;
PartNo 0 ;
Date 19/3/98 ;
Rev 1 ;
Designer Ed Casas ;
Company UBC ECE ;
Assembly 0 ;
Location 0 ;
Device g16v8 ;

Pin 1 = clk ; /* clock */
Pin 2 = show ; /* display enable */
Pin 19 = q2 ; /* state FFs */
Pin 18 = q1 ;
Pin 17 = q0 ;
Pin 16 = out2 ; /* outputs */
Pin 15 = out1 ;
Pin 14 = out0 ;

/* RNG using shift register with reset */

q2.d = (q2 $ q0) # (! (q2 # q1 # q0)) ;
q1.d = q2 ;
q0.d = q1 ;

out2 = show & q2 ; /* gated display */
out1 = show & q1 ;
out0 = show & q0 ;

Name Lab4 ;
PartNo 0 ;
Date 19/3/98 ;
Rev 1 ;
Designer Ed Casas ;
Company UBC ECE ;
Assembly 0 ;
Location 0 ;
Device g16v8 ;

/* (assumes the registers are initialized to 1’s) */

Order: clk, show, %4, out2, out1, out0 ;

Vectors:
C 1 L H H
C 1 H L H
C 1 L H L
C 1 L L H
C 1 H L L
C 0 L L L

2

