
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 2

Lab 2 - Keypad and Display Interface

Introduction

In this lab you will compile and run a C program to
read the keypad and write to the 8-character ASCII
display on the laboratory computer. You will use
these two functions in a demonstration program.

The Laboratory Computer

Each station in the lab is equipped with a PC as well
as a microcomputer based on the Motorola 68000
microprocessor (the “lab computer”).

The lab computer includes a ‘bus’ which allows
various plug-in printed circuit interface cards to be
connected to the microprocessor. These interface
cards provide input/output facilities for the labora-
tory apparatus. In this first lab you will use the key-
board/display card. This card will be used as a con-
trol panel and status display in subsequent experi-
ments.

The laboratory computers run a very simple “oper-
ating system” that does not support a compiler. How-
ever, it does accept commands to read and alter the
contents of the lab computer’s memory. Your soft-
ware will run on the PC and will send commands to
the lab computer over a serial interface. These com-
mands will read and write specific memory locations
which in turn will control the lab hardware.

The remainder of the laboratory computer system
consists of a cabinet and a power supply.

Compiling your Program

Create a project file for your lab using the Turbo C
editor. On the first line put the name of your C file
(e.g. LAB2.C) and on the second line put the file
name IOLIB.LIB. Save this file with the extension
.PRJ (e.g. LAB2.PRJ).

The project file will allow your program to use
the speek() and spoke() routines which allow the
PC to read and write the lab computer’s memory by
sending commands over the serial port.

Each time you start up Turbo C you will need to
define the project name using the Project Project
Name menu item.

If you do not do these steps then Turbo C will not
be able to find the speek() and spoke() functions
when you compile your program.

Reading and Writing I/O Ports

The peripherals on the lab computer are controlled
by reading and writing values from/to specific loca-
tions in the lab computer’s memory. These special
memory locations are often called “ports” or “regis-
ters”.

The keypad/display card has a control port and a
data port. Each port can be treated as an 8 bit (1
byte) memory location. The addresses (locations in
memory) of the control and data ports are:

port address
data port 208
control port 209

The following two functions are available to your
Turbo C program to access the lab computer’s mem-
ory:

int speek(int address) ;
int spoke(int address, int value) ;

The speek() function allows you to obtain the
value of the memory at a given address and the the
spoke() function allows you to set the value of a
memory location. To use these functions you should
include the line #include <iolib.h> at the start of
your program.

Display

The display has 8 character positions. Each position
can display an upper-case letter or digit. To display
a character on the display, you must write the ASCII

lab2.tex 1

value of the character to be displayed plus 128 (i.e.
with the most-significant bit set to ’1’) to the data
port. You must then write the following sequence of
three values to the control port:

the segment position (counting from the right
starting with zero)

the segment position plus 8

the segment position

The effect of writing this sequence of values to the
control port is to cause a short pulse to appear on
bit 3 (value 8) of the control port while the character
position remains on the least-significant 3 bits.

For example, to display an ‘A’ in the leftmost posi-
tion, you would write the following sequence of val-
ues:

address value
208 193
209 7
209 15
209 7

Display Handler Function

Write a function that displays the contents of an 8-
character array on the lab computer’s LED display.
The definition of this function will be as follows:

void display(char string[])
{

...
}

You may assume the string has at least 8 characters
but should not assume that it is zero-terminated.

Keypad

The data port is really two separate ports (an input
port and an output port) that appear at the same ad-
dress. Unlike a conventional memory location, the
value read from an I/O port is not the last value writ-
ten to that memory location. Instead it corresponds
to the logic levels seen by the data port input.

The keypad consists of 16 switches arranged in a
square matrix. Each pushbutton controls a switch

which can short (make a connection between) a wire
running horizontally and a wire running vertically.

The diagram below shows a schematic diagram of
the keypad:

0 1 2 3

4 56 7

8 9 A B

C D E E

5

1

2

4

8

1 2 4 8

Data Port (Output)

D
at

a
P

or
t (

In
pu

t)

The vertical wires are driven by the least signifi-
cant four bits of the data port output while the hor-
izontal wires are connected to the least significant
four bits of the data port input.

A data port bit will be read as a ’1’ only if the
switch on that row is pressed and a ’1’ has been writ-
ten to the data port bit for that switch’s column. You
will have to come up with an algorithm to determine
which key (if any) is being pressed. You must do this
by writing and reading the data port.

Note that the upper four bits of the value read from
the data port may not be equal to zero.

Keypad Handler Function

Write a function int rdkbd (void) that waits until
a key is pressed and returns a character correspond-
ing to the number pressed (e.g. if the button with
the label ’3’ is pressed the function should return the
ASCII value for ’3’ – 51).

Before trying to detect whether a button has been
pushed you should wait until all buttons have been
released. This will avoid having one button press de-
tected several times.

Demonstration Program

Using the keypad and display handler functions,
write a C program that lets the user enter a hexadec-
imal number from the keypad and displays it on the
display unit. The program should do the following:

Display APSC 380 when started.

When a key (0 to F) is pressed, scroll the dis-
play one position to the left and display the new

2

number on the rightmost position.

Hints

Make sure you understand the description of the
hardware interface in detail before you begin to write
and debug your program. You may want to write one
or more short test programs while developing your
program to verify that the hardware indeed operates
as you expect (“bottom-up implementation”).

Use #define to define constants such as port ad-
dresses or bit masks.

The following code waits for all buttons to be re-
leased:

spoke (208, 0xF) ;
while (speek (208) & 0xF) { } ;

The following code sets the third column of the
keypad matrix to a logic ’1’ and then test whether
the top-most row is a logic ’1’. If so, then the E key
has been pressed and the code sets the value of the
variable key to the ASCII value of ’E’.

spoke (208, 4) ;
if (speek (208) & 8) {

key = ’E’ ;
}

You may use the lab at any time since no other
groups are using the lab this term. The TA will only
be available during the scheduled times.

Demonstration

key = ’5’ ;Demonstrate the proper operation of the
keypad/display demonstration program to the lab
demonstrator. He will ask you some questions to
make sure you understand the code you’ve written.

Write-up

Submit a program listing for the keypad/display
demonstration program. It should include comments
as described in Lab 1.

Keep the keypad handler and display routines for
use in the next lab.

3

