
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 1

Tutorial 4 - C Examples
This tutorial provides some examples of C code.

The first example example copies characters from
one array to another but reverses the order of the
characters. Note that when the values in arrays
passed to functions are altered the corresponding val-
ues in the calling function are altered. This is not the
case with scalar variables. Thus the value of the ar-
ray passed as ’y’ will change, but the variable (if any)
used to pass the value of ’n’ won’t.

/* Reverse the order of the n characters
in the character array (string) x and
put the result in the array y. */

void reverse (char x[], char y[], int n)
{

int i ;
i = 0 ;
while (n > 0) {
y[n-1] = x[i] ;
i = i + 1 ;
n = n - 1 ;

}
}

The second example converts a string to upper
case. Note the use of two character constants to ex-
press the difference between the start of the ASCII
codes for the upper and lower case alphabets.

/* Convert a string to uppper case. Note
that both upper- and lower-case
letters appear in order in the ASCII
table. */

void strtoupper (char x[], int n)
{

int i ;
i = 0 ;
while (i < n) {
if (x[i] >= ’a’ && x[i] <= ’z’) {

x[i] = x[i] - (’a’ - ’A’) ;
}
i = i + 1 ;

}
}

The next example shows how you can put more
complex data structures into an array.

/* Increment a time value given as a
three element array consisting of the
hours (index=2), minutes (index=1)
and seconds (index=0). */

void nextsecond (int hms[])
{

hms[0] = hms[0] + 1 ;
if (hms[0] >= 60) {
hms[0] = 0 ;
hms[1] = hms[1] + 1 ;
if (hms[1] >= 60) {
hms[1] = 0 ;
hms[2] = hms[2] + 1 ;
if (hms[2] >= 24) {

hms[2] = 0 ;
}

}
}

}

The next example does the same thing but using
a loop to iterate over the three elements of the array.
In this case the code is more complex and harder to
understand. But if the time structure had many ele-
ments then this algorithm might be simpler.

/* Another way of doing the same thing.
Note syntax for initializing array
values. */

void nextsecond2 (int hms[])
{

int i, done, limit[3] = { 60, 60, 24 } ;
i = done = 0 ;
while (! done && i < 3) {
hms[i] = hms[i] + 1 ;
if (hms[i] >= limit[i]) {
hms[i] = 0 ;
if (i < 2) {

hms[i+1] = hms[i+1] + 1 ;
}
i = i + 1 ;

} else {
done = 1 ;

}
}

}

This example shows how the bitwise logical oper-
ators can be used to “pick out” individual bits in a

1

number and how division by a power of two shifts
the bits in a number to right.

/* print the octal (base 8) representation of a number. It is
assumed the number can be represented as 5 or fewer octal
digits. */

void prtoctal (int n)
{

int i, digits[5] ;

/* find the octal digits in n from LS to MS */
i = 0 ;
while (i < 5) {
digits[i] = n & 0x07 ; /* save the LS 3 bits */
n = n / 8 ; /* shift 3 bits to the right */
i = i + 1 ;

}

/* print the octal digits in the right order */
i = 4 ;
while (i >= 0) {
printf ("%d", digits[i]) ;
i = i - 1 ;

}
}

The last function demonstrates how the above
functions could be called.

/* test the above functions */

void main (void)
{

char z[5] ;
int time[3] = { 59, 59, 23 } ;
reverse ("abcde", z, 5) ;
printf ("abcde reversed is %s\n", z) ;

strtoupper (z, 5) ;
printf ("converted to upper case is %s\n", z) ;

printf ("start time is %d:%d:%d\n", time[2], time[1], time[0]) ;
nextsecond (time) ;
printf ("next second is %d:%d:%d\n", time[2], time[1], time[0]) ;
nextsecond2 (time) ;
printf ("next second is %d:%d:%d\n", time[2], time[1], time[0]) ;

prtoctal (12345) ;
}

2

