
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 1

Solutions to Assignment 7
State Machines in C

Question 1

Using the function names given in the question the
inputs are: moving (bus moving), person (person
waiting to exit), and dooropen (door open). The out-
puts are: lock, and brakes.

The specification requires 3 combinations of out-
puts: (1) the brakes off and the door locked while
the bus is moving, (2) the brakes on and the door
unlocked while someone is waiting to get off, and
(3) the brakes on and the door locked while the pas-
senger is getting off. The controller must therefore
have at least 3 states. We will assign these states the
labels CLOSED, UNLOCKED, and OPEN, respec-
tively. We will attempt to produce a correct design
with this many states and add additional states if re-
quired to meet the specifications. The outputs for
each state are thus:

state lock brakes
CLOSED 1 0

UNLOCKED 0 1
OPEN 1 1

A simple state transition diagram would be as fol-
lows:

UNLOCKED
!moving && person

! person ! d
oo

ro
pe

n

OPEN

CLOSED

The state transition table is as follows:

current input next
state conditions state

mov- per- door
ing son open

CLOSED 0 0 X CLOSED

CLOSED 0 1 X UNLOCKED

CLOSED 1 0 X CLOSED

CLOSED 1 1 X CLOSED

UNLOCKED X 0 X OPEN

UNLOCKED X 1 X UNLOCKED

OPEN X X 0 CLOSED

OPEN X X 1 OPEN

A C program to implement this state machine
would be as follows:

/*
APSC 380 Assignment 7 Question 1
Ed Casas, 1997/10/05

*/

#define CLOSED 1
#define UNLOCKED 2
#define OPEN 3

main()
{

int state = CLOSED ;

while (1) {

/* read input and set next state */

if (state == CLOSED) {

lock (1) ;
brakes (0) ;

if (!moving() && person()) {
state = UNLOCKED ;

}

} else if (state == UNLOCKED) {

lock (0) ;
brakes (1) ;

if (! person()) {
state = OPEN ;

}

1

} else if (state == OPEN) {

lock (1) ;
brakes (1) ;

if (!dooropen()) {
state = CLOSED ;

}

}
}

}

Question 2

The input is the character returned by the getche()
function and the output is the character output using
the putchar() function.

Although in this case there are only two possible
outputs (y and n), the state machine needs more than
two states. This is because allowed input characters
depend on the characters that have already been in-
put. For example, the letter ’E’ is only valid when
starting the exponent part of the number. The solu-
tion below defines seven different “valid input” states
for the different sets of allowed input characters. The
EXP3 state is used so that the output immediately af-
ter the second digit of the exponent is input can re-
main y. The state names and their meanings are as
follows:

State Character
Expected

START initial character
INT integer digits

FRAC fractional digits
ESIGN sign of exponent
EXP1 first digit of exponent
EXP2 second digit of exponent
EXP3 character after exponent

INVALID no more valid characters
allowed

The outputs for each state are as follows:

State Output
START y

INT y

FRAC y

ESIGN y

EXP1 y

EXP2 y

EXP3 y

INVALID n

The state transition diagram is as follows:

invalid

start

int

frac

esign

exp1

exp2

period

period

exp3

e,E

not e, E

any

The state transition table is:

input
current conditions next
state getche state

START +,-,0-9 INT

START . FRAC

START not +,-,0-9,. INVALID

INT 0-9 INT

INT . FRAC

INT not .,0-9 INVALID

FRAC 0-9 FRAC

FRAC E,e ESIGN

FRAC not E,e,0-9 INVALID

ESIGN +,- EXP1

ESIGN 0-9 EXP2

ESIGN not +,-,0-9 INVALID

EXP1 0-9 EXP2

EXP1 not 0-9 EXP3

EXP2 0-9 EXP3

EXP2 not 0-9 INVALID

EXP3 any INVALID

INVALID any INVALID

2

A possible C program is:

/*
APSC 380 Assignment 7 Question 2
Ed Casas, 1997/10/05

*/

#include <stdio.h>

#define getche() getc(stdin)

#define START 1
#define INT 2
#define FRAC 3
#define ESIGN 4
#define EXP1 5
#define EXP2 6
#define EXP3 7
#define INVALID 8

main()
{

int cin, cout, state = START ;

while (1) {

/* read input and set next state */

cin = getche() ;

if (state == START) {

/* no characters read yet */

if (cin == ’+’ || cin == ’-’ || isdigit(cin)) {
state = INT ;

} else if (cin == ’.’) {
state = FRAC ;

} else {
state = INVALID ;

}

} else if (state == INT) {

/* expecting digits for integer part */

if (isdigit(cin)) {
state = INT ;

} else if (cin == ’.’) {
state = FRAC ;

} else {
state = INVALID ;

}

} else if (state == FRAC) {

/* expecting fraction digits */

if (isdigit(cin)) {
state = FRAC ;

} else if (cin == ’E’ || cin == ’e’) {
state = ESIGN ;

} else {
state = INVALID ;

}

} else if (state == ESIGN) {

/* expecting exponent sign or first digit */

if (cin == ’+’ || cin == ’-’) {
state = EXP1 ;

} else if (isdigit(cin)) {
state = EXP2 ;

} else {
state = INVALID ;

}

} else if (state == EXP1) {

/* expecting first exponent digit */

if (isdigit(cin)) {
state = EXP2 ;

} else {
state = INVALID ;

}

} else if (state == EXP2) {

/* expecting second exponent digit */

if (isdigit(cin)) {
state = EXP3 ;

} else {
state = INVALID ;

}

} else if (state == EXP3) {

/* no more valid characters possible */

state = INVALID ;

} else if (state == INVALID) {

/* at least one invalid character seen */

}

/* output character depending on state */

if (state == INVALID) {
putchar (’n’) ;

} else {
putchar (’y’) ;

}

}

printf ("\n") ;

}

3

