
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 1

Solutions to Assignment 3
Number Systems and Logical Operators

Question 1

The answers below show the decimal, binary and
hexadecimal values. Spaces have been inserted into
the binary values to make them easier to read.

1. 8 = 1000 = 0x8

2. 7 = 111 = 0x7

3. 16 = 1 0000 = 0x10

4. 15 = 1111 = 0xf

5. 256 = 1 0000 0000 = 0x100

6. 255 = 1111 1111 = 0xff

7. 237 = 1110 1101 = 0xed

Question 2

1. 1011 = 0xb = 11

2. 1011 1011 = 0xbb = 187

3. 1000 0000 = 0x80 = 128

4. 11 1100 = 0x3c = 60

5. 0011 1100 = 0x3c = 60

Question 3

1. 0x0e = 1110 = 14

2. 0xe = 1110 = 14

3. 0xAA = 1010 1010 = 170

4. 0xFA = 1111 1010 = 250

5. 0x40 = 0100 0000 = 64

6. 0x18 = 0001 1000 = 24

Question 4

/* Print the binary value of an integer
less than 32768. We start at the
largest applicable power of 2 and
work our way down to the smallest
power of 2. For each power, if that
power is "contained" in the number we
remove it and print a ’1’, otherwise
we print a ’0’. When all powers have
been tested the result is that we
have printed the binary
representation of the number. */

#include <stdio.h>

void printbin (int n)
{

int p ;
p = 16384 ;
while (p >= 1) {
if (n >= p) {

n = n - p ;
printf ("1") ;

} else {
printf ("0") ;

}
p = p / 2 ;

}
printf ("\n") ;

}

/* printbin() tests: */

main()
{

printbin(0) ;
printbin(1) ;
printbin(2) ;
printbin(4) ;
printbin(237) ;
printbin(32767) ;

}

Question 5

1. A bitwise ’and’ operation with a ’1’ bit retains
the value of that bit. A bitwise ’and’ operation
with a ’0’ bit always sets that bit to ’0’.

(0xaa & 0x0f)

1

= 0x0a

2. (0x3c & 0xf0) | (0x3c & 0x0f)
= (0x30) | (0x0c)
= 0x3c

3. Note that the && is the logical and operator.

3 * (0xf0 && 0x0f)
= 3 * (0x1)
= 0x3

4. An exclusive-or with a ’1’ bit inverts that bit.

(0x3c ˆ 0xff) + (1 < 3)
= (0xc3) + (1)
= 0xc4

5. ˜ (128 | ’ ’)
= ˜ (0x80 | 0x20)
= ˜ (0xa0)
= 0x5f

6. Note that the || is the logical ‘or’ operator.

128 || (’ ’ == 0x20)
= 128 || (0x20 == 0x20)
= 128 || 1
= 0x01

2

