
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 1

Functions Revisited
This lecture describes in more detail the purpose of functions, their declarations in C, how arguments are passed to
functions and how values are returned.

Why Use Functions?

A C program consists mainly of function declara-
tions. A simple program may only declare a func-
tion called main()1 , but non-trivial programs will
contain many function declarations.

The main purpose of functions is to break up a
long program into small parts which are easier to
understand. Each function should perform a rela-
tively simple task which can be easily understood,
programmed and tested. A rule of thumb is that a
function should fit on one screen (about 25 lines). If
the function is longer than this it probably can (and
should be) broken down into two or more simpler
functions.

A typical program consists of a hierarchy with
a main function which uses (calls) other functions;
these functions in turn call other functions and so on.

A function communicates with other functions
through the values of its arguments and through the
values is returns. This isolation between functions
makes it easier to debug a function and to make sure
that it behaves as desired. It also makes it more
likely that the same function can be re-used in a fu-
ture project.

Another reason to create a function is when the
same (or similar) operations needs to performed on
different variables. For example, if we had to com-
pute the lengths of various strings in different places
in a program, we could write a function that took a
string (character array) argument and returned an
integer. Instead of writing similar code in each place
where we need to find the length of the string we
could just write the function once and call it in each
place where the length of a string has to be computed.

Other computer languages have special names
for void functions: in FORTRAN they are called
subroutines and in Pascal they are called
procedures.

1Parentheses used after a name are used to indicate that the
identifier is a function rather than a variable.

Local Variables

Variables declared inside a function are only “vis-
ible” within that function. A variable of the same
name in another function is considered to be a dif-
ferent variable. Thus you cannot refer to a variable
declared in one function from another function. For
this reason they are known as “local” variables.

The value of a local variable is undefined when a
function begins unless that variable is an argument or
it is explicitly initialized. The value of a local vari-
able is lost each time the function returns.

To pass values between functions you need to use
function arguments and return values.

Function Declarations

A function declaration has four parts:

The return type. This specifies the type (e.g.
int or char) of the value returned by the func-
tion when it is used in an expression. If the
function does not return any value it should be
declared to be of type void.

The name of the function. This is the name used
to refer to a function when it is used in an ex-
pression.

The parameter list. This list specifies a num-
ber of local variables that are used to pass val-
ues to the function. The list is surrounded by
parentheses and the individual variable declara-
tions are separated by commas (unlike a normal
variable declaration where declarations are ter-
minated with semicolons).

The body of the function. This is a sequence
of statements surrounded by braces. Each state-
ments is terminated by a semicolon.

1

Exercise: Write the first 3 parts for a declaration of a

function named cdist that returns an int and takes two

char arguments called x and y.

Flow of Control2

To use a function you use its name in an expression.
When the computer executes that expression (that is,
evaluates its value) the computer transfers control to
the first statement in the function. To “call” a func-
tion is to transfer control to it – i.e. use it in an ex-
pression.

When a return statement is executed control re-
turns to back to the place where that function was
called.

Each function also contains an implicit return
statement after the last statement in the function and
so functions also return after the last statement in the
function is executed.

Function Parameters and Arguments

When a function is declared, a number of variable
are declared in parentheses immediately following
the function name. Strictly speaking, these variables
are called parameters rather than arguments (the ar-
guments are the values used in the calling expres-
sion). Within the function these variables are treated
like other variables. The only difference is that when
each time the function is called the values of the pa-
rameters are initialized to the values of the corre-
sponding arguments in the function call.

There must be a one-to-one correspondence be-
tween the arguments used in a function call and the
parameters in the function declaration. For example,
if we declare a function with one character param-
eter, then when that function is used it must always
have one character-type argument. Similarly if we
declare a function with two int and one char pa-
rameters, then it must always be called with two int
and one char arguments.

The way a computer passes arguments to a func-
tion is to copy the values of the arguments in a spe-
cial set of memory locations called the stack. When
the function executes it removes the values from the

2“Flow of control” is the sequence in which statements in a
program are executed.

stack and assigns them to the parameters. Because
the values or the arguments were copied to the pa-
rameters, this means that changes to the function pa-
rameters have no effect on the values in the calling
expression.

This copying operation is called “passing by
value.”

An exception to the “passing by value” rule is the
case of arrays. To improve efficiency, array argu-
ments are not copied to the corresponding array pa-
rameter. Instead the location in memory of the array
is passed to the function. This is called “passing by
reference.” Changes to an array parameter in a func-
tion will change the corresponding array argument in
the calling function.

Return Values

When a function is declared its return type (possi-
bly void) is specified. If the function return type
is non-void a return statement must be used to re-
turn control to the calling function. The return
keyword must be followed by an expression whose
value is the value to be returned.

Exercise: What’s wrong with the following function?

int strstr (char s1[], char s2[])
{

...
return s1 ;

}

Order of Function Declarations

The compiler must see a declaration for a function
before that function can used in an expression. This
means you must declare your functions before using
them in other functions, including the main() func-
tion.

For built-in functions the function declarations are
contained in “include” files that are included in your
program when a #include line is used in you
program. By convention, the #include lines are
placed near the start of the program before any other
function declarations.

It not possible to declare one function within the
declaration of another function.

2

