
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 1

Arrays and Functions
This lecture introduces three logical operators and covers two additional features of the C language: arrays and
functions.
After this lecture you should be able to:

use the logical and (&&), or (||), and not (!) operators in expressions

declare an array

write expressions that reference an array element

write C code that iterates over all of the elements of an array using either an element count of a terminator array
value

declare a function including function argument types and return values

give the values of function arguments for a given function call

define the terms array, index, function, argument, and return value

Logical Operators

The logical operator ’!’ is the logical negation oper-
ator. It is a unary operator – it only operates on the
value on its right. The result of the logical negation
operator is the value 1 if the value on the right is zero
and 0 otherwise. Logical negation has the highest
precedence of all operators discussed so far.

The logical operators && and || result in the logi-
cal ‘and’ and ‘or’ of the values on their left and right.
The result of a logical ‘and’ is 1 if both values are
non-zero and 0 otherwise. The result of a logical or is
0 if both values are zero and 1 otherwise. Both oper-
ators have lower precedence than the other operators
discussed so far and ‘and’ has a higher precedence
than ‘or’.

Exercise: What are the values of the following expres-

sions?

! (3 || 1 + 1)

! 3 && 1

0 || (1 > 0) && 1

Arrays

An array is an area of the computer’s memory that
can store a number of different values at the same

time. Each individual element of the array is ac-
cessed by using an integer value called an index. We
can picture an array as a row of identical containers
each of which can hold one value. For example, an
8-element array could be drawn as follows:

0 1 2 3 4 5 6 7index

Arrays are declared by putting the number of el-
ements (which must be a constant) in brackets after
the variable name. For example, the following state-
ment declares an array that can store four character
values:

char x [4] ;

Exercise: Give the declaration for an array variable

called tab of 256 integers.

Exercise: How many array elements are declared in

the following declaration: int x[’1’] ; ?

An individual element of an array can be refer-
enced by using the array name followed by the index
value enclosed in brackets. Allowable index values
run from zero to the number of elements in the ar-
ray minus one. For example, to increment the first
element of the above array we could write:

x[0] = x[0] + 1 ;

1

Exercise: Write an expression whose value is two

times the value of the second element of the array x.

Exercise: Write an expression whose value is non-zero

if the first and last elements of the array x are equal.

The value of the index can be any expression, not
simply a constant. For example, the following state-
ments have the same effect as the previous example:

i = 0 ;
x[i] = x[i] + 1 ;

Iterating over Arrays

A very common programming task is to perform the
same operation on all of the elements in an array.
This can be done by using a while-loop, and an
index variable which is incremented in the loop. For
example, the following statements find the sum of the
values in an array of four ints:

int i, sum, x[4] ;
...
sum = 0 ;
i = 0 ;
while (i < 4) {

sum = sum + x[i] ;
i = i + 1 ;

}
...

Exercise: How many times will the loop be executed?

What would happen if the order of the two statements

within the loop was interchanged?

Sometimes it’s more convenient to mark the end
of an array with a special value rather than explicitly
keeping track of the size of the array. For example,
we might use a negative value to mark the end of an
array that contained only positive values.

Exercise: What statements must be used inside the

loop in the following code to compute the sum of the values

in the array x if a negative value is used to mark the end

of the array?

int i, sum, x[4] ;
...
sum = 0 ;
i = 0 ;
while (x[i] > 0) {

...
}
...

Functions

The concept of a function as an operation that maps
one set of values into another set of values should be
familiar from mathematics. A typical example would
be a trigonometric function such as .

A similar construct is available in C. For exam-
ple, the function isdigit() can be used to de-
termine whether a value corresponds to one of the
codes between ’0’ and ’9’. In this case the func-
tion isdigit() has a non-zero value if the value
being tested is a digit and 0 otherwise. The value
to be tested is supplied to the function by enclos-
ing it parentheses immediately following the func-
tion name. The value passed to the function is called
the “argument” and the value of the function is called
the “return value.”

Functions are used in expressions. For example,
the following expression has the value 0:

isdigit(’x’)

while the following function has a non-zero value:

isdigit(’0’)

Exercise: What are the values of the following expres-

sions?

(isdigit(’5’) == 0) * 5

(isdigit(’ ’) == 0) - 1

Declaring Functions

In addition to the functions that are included with the
C compiler, you can declare your own functions. In
general, a function is declared as follows:

<type> <name> (<argument declarations>)
{
<statements>
return <value> ;
}

where:

<type> is char or int and is the type that
the function will return when it’s used in an ex-
pression

2

<name> is the name of the function (e.g.
isdigit)

<argument declarations> declare lo-
cal variables that are used within the function
(see below) and are initialized each time the
function is invoked in an expression.

the return statement terminates execution of
the function and indentifies the value to be used
as the value of the function in the invoking ex-
pression

For example, we could have declared our own ver-
sion of the isdigit() function as follows:

int isdigit (char c)
{
int i ;
i = (c >= ’0’) && (c <= ’9’) ;
return i ;

}

Function Calls

When a function is used (“invoked”) in an expression
the computer first initializes the local variables in the
argument list of the function declaration with the val-
ues of the corresponding argument(s) in the invoking
expression.

Then the computer executes the statements in the
function. until the return statement is executed.
The computer then stops executing statements in the
function and substitutes the value given in the return
statement in place of the function in the invoking ex-
pression.

For example, in the expression:

isdigit (’ ’) == 0

the computer sets the value of the variable c in the
isdigit() function to 32 (the ASCII value of a
space character) and executes the statements in the
isdigit() function until it reaches the return
statement. At that point the isdigit() function
call in the expression is replaced by the value in the
return statement (0). We say that the function “re-
turns” the value 0.

Like variables, functions should be declared be-
fore they are used.

void Functions and Arguments

In some cases a function need not return a value. In
this case the function may be declared as returning a
type void. In other cases a function may not need
any arguments. In this case the argument declaration
may be the word void. For example, a function that
returns the next keystroke might be declared as:

char getche(void)
{

...
}

while a function that prints a character on the screen
might be declared as:

void putch(char c)
{

...
}

It is also possible to declare functions that take a
variable number of arguments. A common example
is the printf() function. We will not define these
types of functions in this course.

3

