
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 1

Introduction to C
This lecture is an introduction to writing computer programs in a popular computer language called C. Due to time
constraints we will cover only the minimum subset of the C language that you will need to complete the lab assign-
ments.
After this lecture you should be able to:

explain the following terms: file, file name, file type, compiler, source, executable, variable, statement, operator,
precedence

evaluate expressions involving integer variables, constants, and the operators described in this lecture

write a simple C program including a main() function declaration, integer variable declarations, and the follow-
ing statements: expression, if/else, and while

predict the result of executing such a program

Compiling a C Program

All information in a computer is stored in hard disks
(fixed inside the computer) and floppy disks (which
can be removed). This information is organized in
files. Each file has a unique name which is used to
identify it. This file name is composed of a name (up
to 8 characters long), a period and an extension (up
to 3 characters long). The name usually has some
mnemonic value while the extension identifies the
type of file.

Exercise: What are the file names and extensions

of the following file names: TC.EXE, LAB1.C, IOLIB.OBJ,

CS.LIB)?

Since microprocessors don’t understand C, we use
a program called a compiler to translate (“compile”)
the the C program (the “source code”) into a lan-
guage that the machine can understand (“machine
language”).

Programs in C have the extension .C while
machine-language programs have the extension
.EXE. Therefore we can say that a compiler is a
program that converts .C files into equivalent .EXE
files.

file
.EXE

file
.C Compiler

Exercise: If you compile a C program in the file ASG.C

what would be the file name of the resulting executable?

The Structure of a C program

Here’s a simple C program:

main ()
{

int i ;

i = 0 ;
while ( i < 4 ) {

printf ( "%d\n", i ) ;
i = i + 1 ;

}
}

If you compile and then execute this program the
computer will print the integers between 0 and 3.

The first two lines are required by all C programs
and define a function called main. The braces
(“curly brackets”) on the second line and the last line
mark the start and end of the function.

The computer executes the statements in order,
starting with the first statement in the function called
main and ending after the last statement in the func-
tion main is executed.

The line int i ; is a statement that declares an
integer variable called i. A variable is an area of
the computer’s memory that is used to store numbers.

The line i = 0 ; is another statement – an ex-
pression statement. This particular expression state-
ment sets the value of the variable i to zero.

The line while ( i < 4 ) is yet another
type of statement, a while statement. The com-
puter repeatedly evaluates the expression within the

1



parentheses and executes the statements between the
braces while this expression is true.

The line starting with printf() is another ex-
pression statement. In this case the expression state-
ment contains only the name of another function
which is to be executed. This particular function
(printf) causes the value of the variable i to be
printed on the screen.

The next line is another expression statement that
increments the value of the variable i.

Exercise: What do you think would be printed out if

the order of the two statements within the while ’loop’ was

interchanged?

The following sections give more detailed infor-
mation about variables, expression statements, and
the two basic types of control statements: if/else
and while statements.

Variable Declarations

We will only need to use integer variables. These
come in two sizes called char and int. Each size
can be signed or unsigned and can take on the range
of values shown below.

variable size unsigned signed
type (bits) range range
char 8 0 – 255 -128 – 127
int 16 0 – 65536 -32768 – 32767

Variables have to be “declared” at the beginning
of the function where they are used. A variable is
only in existence while statements in that function
are being executed and the values of variables are
forgotten when the function terminates.

Here are some examples of variable declarations:

int day, month, year ;

unsigned int cycles ;

char ppc ;

Exercise: What are the possible values for each of

these variables?

The first character of a variable or function name
must be a letter or underscore, followed by other let-
ters, underscores or digits. Case is significant: i and
I are two different variables.

There are certain reserved names that can’t be used
for variable names. Keywords such as if, while,
int, etc. are reserved. A list of reserved keywords
is available from the Turbo C help index screen (type
F1 twice and select “Keywords”).

Exercise: Make up three valid and three invalid vari-

ables names.

Since computers can only work with numbers, let-
ters must be converted to numbers when they are
read into the computer and converted back to char-
acters when they are displayed. The standard map-
ping of characters to numbers is called “ASCII.” For
example, the number used to represent the letter ’a’
is 97 and the number for the space character is 32.
ASCII encoding only defines values from 0 to 127
so a char variable is typically used to store the code
for a character.

Expressions

Expressions describe how new values are computed
from the values of existing variables and constants.
Expressions are built up from variables, constants
and operators.

Constants are similar to variables except that their
values cannot be changed. Integer constants can
be expressed as a number (e.g. 12). We can also
specify the ASCII value of a particular character by
surrounding that character with single quotes (e.g.
’e’).

Operators are characters denoting operations to be
performed on variables such as addition, compari-
son, and assignment.

For now, we will only study a few of the opera-
tors available in C. The following is a list of the most
common operators and examples of expressions us-
ing them:

the arithmetic operators, * / + - , result in
the product, quotient, sum and difference of the
values on the left and right. As usual, multipli-
cation and division are performed before (“have
higher precedence than”) addition and subtrac-
tion. Otherwise operations are done left to right.

1 + 3 * 5 / 4

2



parentheses are not really operators but are used
to change the order in which parts of an expres-
sion are evaluated

( 2 + ’ ’ ) * 3

comparison operators (< > >= <= == !=)
compare the value on the left and right of the
operator. the result is the value 0 if the compar-
ison is false, 1 if it is true. Comparison oper-
ators have lower precedence than the operators
described above.

( -1 < ( 3 != 2 ) ) * ( 5 > 1 )

the assignment operator, =, assigns the value of
the expression on the right to the variable on
left. The result is the value that is assigned. As-
signment operators have lower precedence than
the operators given above.

b = 5
c = b - ( a = 3 )

We will discuss other operators as we need them.
A complete list of operators and their precedence
is available from the Turbo C help screen (type F1
twice and select ”Precedence”).

Exercise: What are the values of each of the above

expressions (the ASCII value for a space is 32)?

Statements

Expression Statements

The most common C statement is an expression
statement. It is simply an expression terminated by a
semicolon. For example:

i = i + 1 ;

if/else statement

This statement causes only one of two groups of
statements to be executed depending on the value of
an expression. If the expression is non-zero the state-
ments in the if portion are executed, otherwise the
statements in the else portion (if any) are executed.

if ( <expression> ) {
<statements>

} else {
<statements>

}

Exercise: What is the value of ’i’ after executing the

following statements?

b = 4 ;
if ( b * b == 4 ) {

i = 1 ;
} else {

i = 0 ;
}

while statement

As explained previously, the while statement is
used to repeatedly execute a group of statements
while the controlling expression is non-zero.

while ( <expression> ) {
<statements>

}

Exercise: How many times will the statement inside the

’while loop’ be executed?

b = 2 ;
while ( b <= 16 ) {

b = b * 2 ;
}

Functions

C has many pre-defined functions to do formatted
input and output, compute values of mathematical
functions, manipulate character strings, etc.

Functions can be invoked within expressions just
like any other value. The value of a function depends
on the definition of the function. Many functions also
have side-effects such as printing a string on the dis-
play.

3



Some examples of built-in functions are the
printf() function for formatted output,
getchar() to read a character from the key-
board, or isdigit() to test whether a character is
a decimal digit.

In order to use C’s built-in functions one or more
“#include” lines must be used at the start of a pro-
gram. These lines tell the compiler to load files (“in-
clude files”) that define particular groups of built-
in functions. For example, the line #include
<stdio.h> lets you use the standard i/o func-
tions in your program, while the line #include
<string.h> lets you use the standard functions
that manipulate strings.

The Turbo C on-line help can give you details on
any particular function (enter the function name in
the edit window, put the cursor on the function name
and press control-F1).

Comments and White Space

“White space” characters include spaces, tabs and
the invisible characters that mark the end of a line.
White space is optional except where necessary to
avoid ambiguity, such as between int and the vari-
able name. In places where white space is required,
you may use any type and any number of white space
characters.

Comments are notes included in the source code to
help readers understand the program. Comments are
treated as white space by the compiler. Comments
are delimited by the character pairs /* and */.

Exercise: Could the first program in this lecture be re-

written all on one line?

Example Program

Here’s another example of a C program:

/* Sample program for introduction to C
Ed Casas
97-9-4

*/

#include <stdio.h>

/* print the ASCII values of all characters that are
digits (ASCII assigns codes for digits in numerical
order). */

main ()
{

int i ;

i = 0 ;
while ( i <= 127 ) {

if ( i >= ’0’ && i <= ’9’ ) {
printf ( "Character number %d is a digit.\n",

i ) ;
}

i = i + 1 ;
}

}

Exercise: What will be printed by the program above?

4


