
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 1

Parallel Interfaces
Parallel I/O ports can be seen as extensions of the CPU’s data bus. They transfer one word at a time between the CPU
and a peripheral. A parallel interface usually involves additional “handshaking” lines and a well-defined protocol
to control the transfer of data. Parallel interfaces are used to transfer data with higher-speed peripherals such as
printers. We will study one simple example of a parallel interface, the parallel printer interface.
After this lecture you should be able to: (1) describe the operation of a parallel printer interface; and (2) write C code
to read and write the individual bits of an I/O port.

I/O Ports

All microcomputer-based control systems must have
input/output (I/O) devices to move data between the
outside world and the computer. The interface be-
tween the CPU and these I/O devices is through I/O
ports that appear as memory locations to the CPU.
Using these I/O ports the CPU can input (read) or
output (write) a number of bits (typically one byte)
at a time.

Typical examples of I/O ports include output ports
that drive LEDs, ports to scan a keypad, ports to
control machinery, etc. More complex I/O inter-
faces such as floppy disk controllers or serial inter-
face chips usually contain several I/O ports. Some
ports are used to obtain status information about the
interface through “status registers” and other ports
can control the interface’s operation through “control
registers.”

For example, each printer interface on the IBM PC
has associated with it a status port that can be used to
obtain certain status information (busy, on-line, out
of paper, etc). The printer interface also has a control
port that can be used to reset the printer and set the
automatic line feed mode. In addition, there is an
output port that is used to output the character to be
printed.

Software Aspects

High-level languages such as C don’t allow the pro-
grammer to read or write specific memory locations.
Special functions (often called peek() and poke())
are used to access the memory locations correspond-
ing to the I/O ports.

It’s often necessary to set or clear a particular bit
on an output port or to test the value of a particular

bit on an input port. This can be done with bit masks
and the bit-wise logical operations AND and OR.

To set a particular bit(s), the current output value
is OR’ed with a bit-map which contains 1’s in the
bit positions to be set. To clear a particular bit(s),
the current output value is AND’ed with a bit-map
which contains 0’s in the bit positions to be cleared.
To test the value of a particular bit, the input value is
ANDed with a bit-map which contains 1’s in the bit
position(s) to be tested.

Here are some examples of C code that access I/O
ports and manipulate the bits:

unsigned char c ;
...
c = peek (0x60) ; /* read byte from address 0x60 */
...
if (c & 0x80) { /* test MS bit */
...
if (c & 0x07) { /* check LS 3 bit */
...
c = c | 0x7 ; /* set LS 3 bits to 1s */
...
c = c & 0xbfh ; /* clear bits 5 and 4 */
...
poke (0x70, c) ; /* write to I/O port at 0x70 */

Often it’s not possible to read the value written to
an output port (i.e. the port is write-only). If indi-
vidual bits will need to be changed, it’s necessary
to keep track of the most recent value written to the
port, modify this copy and then write the result to the
I/O port location.

For example, the following code clears the LS bit
of a value that is being output to an 8-bit output port
which is located at address 0x80. In this case the port
is output-only so a copy of the output value is kept in
the variable outval.

outval = outval & 0x0fe ;
spoke (0x80, outval) ;

1

Exercise: The status port for a serial interface chip is located

at I/O port 55H. Bit 2 (bits are usually numbered from 0 starting

with the LS bit) will have the value 1 if a received character is

available to be read (from another port on the chip). Write a

section of C code that checks to see if there is a character ready

to be read.

Parallel Printer Interface

We will use the “Centronics”-compatible parallel in-
terface as an example of a parallel interface. Other
parallel interfaces such as SCSI and IEEE-488 oper-
ate in a similar fashion but have more complicated
protocols to allow the interface to be shared by sev-
eral peripherals.

The parallel printer interface was designed to al-
low computers to drive printers. There are eight
data lines, four output (to printer) handshaking sig-
nals and five input (from printer) handshaking sig-
nals. Of the handshaking signals, only one input sig-
nal (BUSY) and one output signal (STROBE) are re-
quired. The other handshaking signals are used for
things such as out-of-paper, on-line, and error sig-
nals.

Data

STROBE

BUSY

C
om

pu
te

r

P
rin

te
r

8

To write a value to the printer the data bits are
put on the eight data lines (D0 to D7) and the
STROBE output signal is set low for a minimum of
0.5 seconds. When the STROBE goes low, the data is
accepted by the printer and the printer turns the BUSY
line high to indicate that it has accepted the character,
that the printer is busy and that no more data should
be sent.

When the printer has finished processing the char-
acter it turns the BUSY line back to a low level and the
computer can then send the next character.

Data

STROBE

BUSY

valid data

printer ready to
accept next character

printer becomes busy
time

data for previous character

This interface uses TTL signal levels (about 0

volts for low and about 5 volts for high).

Small Computer System Interface
(SCSI)

This is a type of parallel interface that allows for bidi-
rectional data transfer between up to 8 hosts (“initia-
tors”) and peripherals (“targets”). The different hosts
and peripherals are connected together on the same
bus. The SCSI interface is well defined and is avail-
able on many different computers. It is widely used
to connect computers to disk and tape drives, CD-
ROMs, scanners, high-speed printers, etc.

The SCSI interface includes a protocol for arbi-
trating access to the bus by initiators and for select-
ing a specific target. The actual data transfers over
the SCSI bus use a protocal similar to that described
above with each byte transfer being acknowledged
by the target before another byte is transferred.

Depending on the speed of the peripheral and the
host interface the bus can transfer data at up to sev-
eral megabytes per second. The SCSI devices at-
tached to the bus are electrically connected in par-
allel with each device configured to respond to a par-
ticular bus ID number (ID).

Another advantage of the SCSI interface is that it
defines a set of common commands for devices with
similar characteristics. This allows the same soft-
ware to drive different devices. For example, the
same generic commands (rewind, skip forward, etc)
can be used to control tape drives from different man-
ufacturers.

HPIB/GPIB/IEEE-488

The General Purpose Interface Bus (GPIB) is another
bidirectional interface. Like the SCSI bus it allows
multiple bus masters (“talkers”) and slaves (“listen-
ers”). It was developed by HP who named it HPIB
(HP Interface Bus). The standard is called IEEE-488.
This bus is used mostly for control of laboratory in-
struments.

2

