
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 1

Constants and State Machines in C
This lecture covers the use of symbolic constants in C programs and the structure of C programs that implement state
machines.
After this lecture you should be able to use symbolic constants in C programs and write a C program to implement a
state machine.

Symbolic Constants

Most programs use constants. Examples of constants
include I/O port addresses, bit patterns (“masks”), ar-
ray lengths, string values, etc.

Putting constants directly into the statements in
a program makes it difficult to find and change the
values of these constants if the program needs to
be modified. Embedding constants directly into the
code can also be confusing because, unlike variables,
constants don’t have names that can help explain
their meaning.

The solution to these problems is to use symbols
similar to variable names to represent constants. In
C this is done by using #define lines. Each such
line defines the value of a symbol. Wherever the de-
fined symbol appears in the rest of the program the
compiler will replace the symbol with the previously
defined value.

For example, if we had the following lines in a
program:

#define IOPORT 32
#define MSG "Hello, world!\n"
#define u_char unsigned char
#define NCHR 8

then whenever the symbols IOPORT, MSG, u_char or
NCHR appeared anywhere in a subsequent line in the
program they would be replaced by corresponding
text. The substitution takes place before the line is
seen by the rest of the compiler. This allows the con-
stants to be of any type (numbers, strings or even
keywords). Thus we could have lines in the program
such as:

int x[NCHR] ;
u_char c2 ;
spoke (IOPORT, 1) ;
printf ("%s", MSG) ;

Typically the #defines are placed at the start of a
source file, immediately after the #include lines.

It is good practice1 to use symbolic constants for
all constants in a program. The only exceptions
should be cases where the purpose of the constant
is clear from the context. The only common excep-
tions are the values 0 (e.g. i=0) and 1 (e.g. i=i+1).
Constants with other values should almost always be
replaced by symbolic constants.

State Machines in C

We have seen that state machines allow us to unam-
biguously describe the behaviour of a controller. One
way to implement a state machine is by writing a pro-
gram that behaves the same way as a state machine.

Such a program is written as a single continuous
(infinite) loop. In each iteration through the loop the
program does two things: (1) selects the next state
according to the current state and the values of the
inputs, and (2) sets the outputs according to the cur-
rent state.

A a program that implements a state machine can
be written as follows:

assign a unique number to each state

define an integer variable whose value will be
the current state

use an infinite loop that encloses the remaining
statements:

use if/else statements to select a different set
of statements to be executed depending on the
current state

write statements for each state that set the out-
puts

1You will be expected to use symbolic constants in future
assignments and labs whenever it is appropriate.

1

write statements for each state that set the next
state based on the current input

For example, the state transition diagram for the
fan motor controller state machine given in the lec-
ture on state machines was:

COOLINGON OFF
on==0

on==1

on==1

hot==0 && on==0

Here is an example of how we would write the
code for this state machine:

#define ON 1
#define COOLING 2
#define OFF 3

main()
{

int on, hot, run, state ;

while (1) {

if (state == ON) {

run = 1 ;

if (on == 0) {
state == COOLING ;

}

} else if (state == COOLING) {

run = 1 ;

if (on == 0 && hot == 0) {
state == OFF ;

} else if (on == 1) {
state = ON ;

}

} else if (state == OFF) {

run = 0 ;

if (on == 1) {
state = ON ;

}

}

} /* end of while() loop */

}

Note that the structure of the program will be the
same for every state machine. The only changes will

be in the number of states and in the statements that
set the next state and the output values.

Exercise: Consider a state machine that implements a three-

digit digital combination lock. The lock should open when the dig-

its 3, 7, and 4 are entered sequentially and close when a wrong

digit is entered. Draw the state transition diagram. Write the

C code that implements this state machine assuming you have

functions getch() and setlock(int locked) available.

2

