
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 1

Indentation, for Loops and Strings
This lecture covers several useful details of the C language.
After this lecture you should be able to indent your code according to K&R conventions and use the ++ operator and
for loops in your programs.

Indentation

Since the C compiler considers any sequence of
white space characters to be equivalent there are
many ways to format a program. However, some
formatting conventions have been established to help
convey the logical structure of the program. The
most important of these conventions is the use of in-
dentation.

The general rule is that statements embedded
within another statement (i.e. inside pairs of braces)
are indented several (3 to 8) spaces more than the in-
dentation of the immediately surrounding statement.
The placement and indentation of braces also helps
convey the meaning of the code. Using a consistent
indentation convention will greatly help you and oth-
ers understand the structure of the program.

There are several popular indentation styles. Any
one of these would normally be acceptable if used
consistently. However, many students have tended
not to use any style at all and this has caused much
confusion.

From now on all programs submitted will be re-
quired to use the “K&R” indentation style. This style
was first used by the designers of the C language
(Kernighan and Ritchie). This is also the indenta-
tion style used in the examples and solutions given
in this course.

Marks will be deducted for any C program
written for a lab, assignment or exam that does
not follow the K&R indentation conventions.

Increment Operator

The unary operator ++ is used in C to increment a
variable by one. If the operator is placed before vari-
able (e.g. ++i) the variable is incremented before
its value is used in the expression. If the operator is
used after the operator (e.g. i++) the initial value of

the variable is used in the expression. This operator
has a lower precedence than any other unary operator
but a higher precedence than non-unary operators.

Exercise: If n has the value 5, what is the value of the expres-

sion ++n - 1? What is the value of the expression 2 * n++?

The -- operator is used in the same way as ++ but
it decrements the variable by 1 instead of increment-
ing it.

The for Loop

Iterative loops are used so often that most computer
languages have special language constructs to imple-
ment them. In C this is done with a statement called
a for loop.

Every iterative loop must have three parts: initial-
ization of the loop control variable (done once before
the start of the loop), testing of the loop variable be-
fore each execution of the statements in the loop, and
the increment (or other change) of the loop variable
at the end of the loop. The for loop allows us to de-
fine a loop more compactly by specify each of these
actions in one statement. Here’s an example of a for
loop:

for (i=0 ; i<10 ; i++) {
sum = sum + x[i] ;

}

The for loop is similar to a while loop except
that it contains three expressions in parentheses after
the for keyword. The first expression is evaluated
immediately before the start of the loop. The second
expression is evaluated before each iteration of the
loop and terminates the loop if it evaluates to zero.
The final expression is evaluated at the end of each
iteration of the loop. The above code is equivalent to
the following:

i=0 ;

1

while (i<10) {
sum = sum + x[i] ;
i=i+1 ;

}

Exercise: Use a for loop to print all the powers of 2 with

values between 1 and 256.

Nested Loops

It’s often necessary to use one loop inside another.
These are called nested loops. A different loop vari-
able needs to be used to control each loop. For exam-
ple, the following code would print all the possible
combinations of two dice:

for (i=1 ; i<=6 ; i++) {
for (j=1 ; j<=6 ; j++) {

printf ("%d and %d\n", i, j) ;
}

}

Flag Variables

Sometimes it’s not practical to put the code that con-
trols whether a loop should continue inside the con-
trol expression in a while loop. In this case we can
use an auxiliary “flag” to control the loop instead.
The value of this variable is initialized outside the
loop and changed inside the loop when it’s necessary
to terminate the loop. For example:

int c, done ;
...

done = 0 ;
while (! done) {

c = getche() ;
if (c == ’x’) {

done = 1 ;
}

}

Exercise: What does the above code do?

Strings

Strings (sequences of characters) in C are declared
and stored as character arrays. By convention each

string in C is terminated with a null character (the
character with value zero).

The C language supports this convention by cre-
ating properly-terminated arrays when a sequence of
characters are surrounded by double quotes. Note
that there are no operators that operate on strings so
these string constants can only be used in variable
initializations and as function arguments.

There are built-in functions that can manipu-
late null-terminated strings. For example, the
strlen() function returns the length of a string,
and the strcmp() function compares two strings.
To use these functions you must include the
string.h include file in your program (using
#include <string.h>). For example:

#include <string.h>
...
char name[5] = "Jane" ;
...
n = strlen(name) ;

Exercise: Why is the string name declared as having 5 ele-

ments if it is being initialized with a 4-character value?

The functions fgets() and fputs() can be used
to read and write a string from a file or the key-
board/display.

2

