
THE UNIVERSITY OF BRITISH COLUMBIA

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EECE 379 : Microcomputer System Design
2000/2001 Winter Session Term 1

MID-TERM EXAMINATION
12:30 – 1:20 PM
October 23, 2000

This exam has two (2) questions. The marks for each question are as indicated. There are a total of 20 marks.
Answer all questions. Write your answers in the exam book provided. Show your work. You may answer the questions
in any order. Books, notes and calculators are allowed. You may keep this exam paper.

Question 1 (11 marks)

This question asks you to design a subsystem for a hard disk controller. The interface consists of:

� a 10-bit unsigned input, track
� two std_logic outputs, up and down
� a 1-bit std_logic input, reset
� a clock input, clk

The device has an internal 10-bit unsigned register, reg.

The up output is asserted whenever the value of reg is numerically less than track. The down output
is asserted whenever the value of reg is numerically greater than track.

reg changes only on the rising edge of the clock signal. The value of reg is set to 0 if reset is ’1’
(high), it is incremented if up is ’1’, it is decremented if down is ’1’, and otherwise remains unchanged.
Figure 1 shows some sample waveforms.

[I] reset

[I] clk

[O]up

[O]down

[I] track 000 010 000

100.0ns 200.0ns 300.0ns 400.0ns 500.0ns 600.0ns 700.0ns 800.0ns 900.0ns 1.0usName:

Figure 1: Sample Waveforms (Question 1)

Write a VHDL entity (named hdc) and architecture for a circuit that is synthesizeable by MaxPlus+II
and meets these specifications. You may use std_logic, std_logic_vector or unsigned types.

1



Apply type conversion functions as necessary. Any process in your VHDL code must contain ex-
actly one if statement controlling one simple signal assignment statement. You need not include
comments. Include any library and use statements required.

Hint: The comparison operators > and < can be used with unsigned signals.

Question 2 (9 marks)

This question asks you to write an 80x86 assembly-language routine (a “function”) called outbuf:
that outputs each byte in a data buffer to an output port.

When your routine is called the register BX will contain the address of the first byte in the buffer and
register CX will contain the number of bytes to be output.

For each byte in the buffer, your routine must:

1. repeatedly input from I/O (not memory) address 0x30 until the least-significant bit of the value
read is 1. The values of the other bits must be ignored.

2. output the byte from the buffer to I/O (not memory) port 0x50

Your routine must terminate with a RET statement. It does not have to save or restore the values of
any registers.

You must declare storage for any temporary variables you use, but you need not include comments or
assembler directives such as segment, assume or org.

Hints: Write out a C solution before you start.

2


