
EECE 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

2000/2001 WINTER SESSION, TERM 1

Interrupts
This lecture covers the use of interrupts and describes the vectored interrupt mechanism used on the IBM PC using
the Intel 8259 Programmable Interrupt Controller (PIC).
After this lecture you should be able to: (1) choose between polling and interrupts to service a peripheral and justify
your choice, (2) describe how the 8259 PIC handles multiple interrupt sources, and (3) write an ISR in 8088 assembly
language to service interrupts generated by the 8259 PIC.

Introduction

The two common ways of servicing devices are by
polling and by using interrupts. Polling means the
status of the peripheral is checked periodically to de-
termine whether it needs to be serviced, for example
whether the device has data ready to be read or can
accept more data. Polling is typically done by testing
a “data register empty” bit in a status register.

The alternative to polling is to use interrupts: a
signal from the peripheral connects to the CPU’s in-
terrupt request input. The peripheral interface is de-
signed to assert this interrupt request signal when it
requires service (e.g. when it has data available or
when it can accept more data). The result of assert-
ing the interrupt signal is to temporarily suspend the
currently-executing program and to cause an inter-
rupt service routine (ISR) to be executed. The ISR
transfers data to/from the peripheral.

In this lecture we cover the design of interrupt-
driven I/O devices on IBM PC compatible architec-
tures.

Choosing Between Polling and Inter-
rupts

I/O devices such as printers, keyboards, etc. require
that the CPU execute some code to “service” the de-
vice. For example, incoming characters have to be
read from a data register on the peripheral interface
and stored in a buffer.

Polling must be done sufficiently fast that data is
not lost. For example, if a serial interface can receive
up to 1000 characters per second and can only store
the last character received, it must be checked at least
once per millisecond to avoid losing data. Since we
need to periodically check each device, regardless of

whether it requires service or not, polling introduces
a fixed overhead for each installed device.

Another, possibly greater, disadvantage of polling
is that polling routines must be integrated into each
and every program that will use that peripheral. Pro-
grams must be written to periodically poll and ser-
vice all the peripherals they use. Such tight coupling
between the application and the hardware is usually
undesirable except in the simplest embedded proces-
sor control systems.

On the other hand, an ISR is only executed when
a device requires attention (e.g. a character has been
received). Thus there is no fixed overhead for using
interrupt-driven devices. In addition, since ISRs op-
erate asynchronously with the execution of other pro-
grams, it is not necessary for application programs to
worry about the details of the I/O devices.

However, responding to an interrupt typically re-
quires executing additional clock cycles to save the
processor state, fetch the interrupt number and the
corresponding interrupt vector, branch to the ISR and
later restore the processor state. In addition, ISRs are
much more difficult to write and debug than other
code because many types of ISR errors will “crash”
the system.

Some factors to consider when deciding whether
to use polling or interrupts include:

� Can the device generate interrupts? If the pe-
ripheral is very simple then it may not have been
designed to generate interrupts. Very simple mi-
crocontrollers may not have interrupt hardware.

� How complex is the application software? If the
application is a complex program that would be
difficult to modify in order to add periodic polls
of the hardware then you may have to use inter-
rupts. On the other hand, if the application is
a controller that simply monitors some sensors

lec4.tex 1

and controls some actuators then polling may be
the best approach.

� What is the maximum time allowed between
polls? If the device needs to be serviced with
very little delay then it may not be practical to
use polling.

� What fraction of polls are expected to result in
data transfer? If the rate at which the device is
polled is much higher than the average trans-
fer rate then a large fraction of polls will be
“wasted” and using interrupts will reduce this
polling overhead.

In general, you should use interrupts when the
overhead due to polling would consume a large per-
centage of the CPU time or would complicate the de-
sign of the software.

Exercise 48: You are designing a simple furnace controller. It

uses a microcontroller to read a temperature sensor and turn a

heater on and off in response to the temperature. Would you use

interrupts for this application?

Exercise 49: You are designing the keyboard interface for a

general-purpose computer. Is the device driver likely to make

use of interrupts?

Exercise 50: Data is arriving on a serial interface at 4000 char-

acters per second. If this device is serviced by polling, and each

character must be read before another one is received, what is

the maximum time allowed between polls? If each poll requires

10 microseconds to complete, what fraction of the CPU time is

always being used up even when the serial port is idle? What if

there were 8 similar devices installed in the computer?

Exercise 51: Data is being read from a tape drive interface

at 100,000 characters per second. The overhead to service an

interrupt and return control to the interrupted program is 20 mi-

croseconds. Can this device use an ISR to transfer each charac-

ter?

Alternative Approaches

It’s also possible to use a mixture of interrupt and
polled devices. For example, a device can be polled
by an ISR that executes periodically due to a clock
interrupt. This removes the need to include polling
routines in each application without needing to add
interrupt request hardware to the peripheral.

We can also poll several different devices from a
common ISR. This may actually be more efficient
that having each device issue independent interrupts.

It is also common for devices to buffer multiple
bytes and issue an interrupt only when the buffer is
full (or empty). The ISR can then transfer the com-
plete buffer without incurring the interrupt overhead
for each byte. For example, modern PC serial in-
terfaces can store up to 16 bytes before issuing an
interrupt. This cuts down the interrupt overhead by
up to 16.

Because interrupts occur due to events outside the
computer’s control, it is usually difficult to predict
the exact sequence and rate in which interrupts will
happen. In applications where loss of data cannot
be tolerated (e.g. where safety is a concern) the de-
signer must ensure that all of the devices serviced by
interrupts can be properly serviced under the worst-
case conditions. Typically this involves a sequence
of nested interrupts happening closely one after an-
other in a particular order. In some of these systems
it may be better to use polling rather than interrupts
in order to ensure correct worst-case behaviour.

Exercise 52: Consider a monitoring system in a nuclear power

plant. The system is hooked up to hundreds of sensors, each

of which can indicate an error condition. It is difficult to predict

exactly how often and in what order these error conditions will

happen. Would you design the system so that alarm conditions

generated interrupts? Why or why not?

Operating Systems, Device Drivers
and ISRs

General-purpose computers (as well as many em-
bedded systems) use operating systems to provide
device-independent I/O. The operating system con-
verts a generic I/O request (e.g. ”write this buffer to
the standard output”) into the low-level IN and OUT
instructions to control a specific piece of hardware
(e.g. a disk drive) and transfer data.

O.S.

device
driver

ISR hardware

data

data

interrupt request

application

2

The software that carries out the device-specific
control and I/O operations is called a device driver.
Typically a device driver is divided into a “slow” part
that is called by the operating system (the “kernel”)
and a “fast” part that is invoked by an interrupt (i.e.
it is an ISR). These two software routines communi-
cate using shared data structures (FIFO queues).

The actual details vary widely depending on the
operating system and the hardware.

Maskable, Non-Maskable and Soft-
ware Interrupts

Like many other processors, the 80386 has two types
of interrupts: maskable and non-maskable. Mask-
able interrupts (asserted on the INTR pin) can be dis-
abled by clearing the interrupt-enable flag (IF bit) in
the flags register using the CLI instruction.

Non-maskable interrupts (asserted on the NMI
pin) cannot be disabled. Thus NMI is usually used
for very high priority events such as imminent loss of
power or a hardware fault. For example, on the PC
NMI is asserted if the hardware discovers a memory
error.

Software interrupts cause the same interrupt pro-
cessing as maskable and non-maskable interrupts but
they are caused by executing an INT instruction.

In addition, certain error conditions (such as di-
vide by zero) can cause exceptions which behave in
the same way as software interrupts.

Interrupt Processing

A maskable interrupt causes an interrupt acknowl-
edge cycle (similar to a read cycle) which reads a 1-
byte interrupt type from the interrupting peripheral.
The interrupt type (which is not the same as the in-
terrupt “number”) is then multiplied by four (4) and
an interrupt vector is fetched from this address.

NMI always uses the interrupt vector for interrupt
type 2, thus allowing it skip the interrupt acknowl-
edge cycle and respond more quickly.

For a software interrupt the interrupt type is sup-
plied in the instruction and so, again, no interrupt ac-
knowledge cycle is required.

The following sequence of events happens in re-
sponse to an interrupt:

1. the current instruction is completed. If a lengthy
instruction, such as a divide, is in progress this
could take tens of processor cycles

2. an interrupt acknowledge cycle is run1 and the
CPU reads an interrupt type from a special pe-
ripheral that recognizes the interrupt acknowl-
edge cycle and responds with the interrupt type

3. the CPU saves the processor context (flags,
IP and CS registers are pushed on the current
stack) to preserve the values of the processor
registers (“processor context”) when the inter-
rupt happened

4. the interrupt-enable flag (IF) is cleared, thus
preventing the interrupt request signal from im-
mediately causing another interrupt

5. an interrupt vector (the address of the start of
the ISR) is retrieved from memory by reading
4 bytes (offset and segment) from an address
equal to the interrupt type multiplied by 4. The
offset (new IP) is stored in the lowest two bytes,
the segments (new CS) in the higher two bytes.

6. the CPU branches to the address that was re-
trieved in the previous step and this begins exe-
cution of the ISR

The first two steps are skipped in the case of NMI
and software interrupts.

Exercise 53: How could you invoke the NMI handler on a PC

in such a way that the ISR’s IRET would return control to the

following instruction?

Exercise 54: What memory locations store the NMI interrupt

vector? Draw a diagram showing the contents of each byte of

these memory locations assuming the ISR for NMI is located at

address E000:0FBE (segment:offset).

Exercise 55: In “real mode” each 80x86 interrupt vector requires

4 bytes. What is the maximum number of bytes used up by an

interrupt vector table?

The 8259 in the IBM PC Architecture

The 80x86 CPUs only have one interrupt request pin.
Although simple systems may only have one inter-

1For obscure reasons the CPU actually performs two inter-
rupt acknowledge bus cycles separated by a number of idle bus
cycles, but we will consider it as a single bus cycle.

3

rupt source, most systems must have some way of
dealing with multiple interrupt sources. The Intel
“way of doing things” is to use a chip called a pro-
grammable interrupt controller (PIC). This chip takes
as inputs interrupt request signals from up to 8 pe-
ripherals and supplies a single INTR signal to the
CPU as shown below:

INTR

bus
control

address
A0

INT

INTA*
RD*
WR*

decoder CS*

data bus

IR0
IR1
IR2

IR7

8259 PIC80x86

fr
om

 p
er

ip
he

ra
ls

The PIC has 3 purposes:

1. It allows the individual interrupts to be enabled
or disabled (masked).

2. It prioritizes interrupts so that if multiple inter-
rupts need to be serviced at the same time the
one with the highest priority is serviced first.
The priorities of the interrupts are fixed, with in-
put IR0 having the highest priority and IR7 the
lowest. Interrupts of a lower priority not han-
dled while an ISR for a higher-level interrupt is
active.

3. It outputs the interrupt type that the CPU reads
during the interrupt acknowledge cycle. This
tells the CPU which of the 8 possible inter-
rupts occurred. The PIC on the IBM PC is pro-
grammed to respond with an interrupt type of 8
plus the particular interrupt signal (e.g. if IR3
was asserted the CPU would read the value 11
from the PIC during the interrupt acknowledge
cycle).

The following diagram shows how each of the in-
terrupt request lines to the PIC can potentially cause
an interrupt request to be made to the CPU. The CPU
reads the interrupt type from the PIC during the in-
terrupt acknowledge cycle and then uses this type to
look up the address of the ISR in the interrupt vector
table.

interrupt
number

interrupt
 type

interrupt
vector
table

address
 of
 ISR

CPU

data
bus

IRx

INTR

PIC

INT

On the IBM AT and later models there are more
than 8 interrupt sources and there are two PICs. The
slave PIC supports an additional 8 interrupt inputs
and requests an interrupt from the master PIC as if it
were an interrupting peripheral on IR2.

Exercise 56: What is the maximum number of interrupt sources

that could be handled using one master and multiple slave

PICs?

Exercise 57: Compare this approach to that used for vectored

interrupts on typical 68000 systems. How many interrupt request

lines are there? Are they active-high or active-low? How many

interrupt sources can be connected directly to a 68000? What

if a wired-or configuration is used? What if a priority encoder

is used? What device supplies the interrupt number or interrupt

vector in a typical 68000 system?

Interrupt Number and Interrupt
Type

A common source of confusion is the difference be-
tween the interrupt number, which is the interrupt re-
quest pin on the PIC that is asserted by a peripheral
and the interrupt type which is the value read by the
CPU during the interrupt acknowledge cycle or sup-
plied in an INT instruction.

The interrupt inputs to the PIC are connected as
follows on a IBM PC-compatible system:

interrupt device
number type

0 8 timer highest
1 9 keyboard
2 10 reserved
3 11 serial port 2
4 12 serial port 1
5 13 hard disk
6 14 floppy disk
7 15 printer 1 lowest

4

The following are some of the other interrupt types
that are pre-defined on 80x86 CPUs:

interrupt type cause
0 Divide by Zero
1 Single Step
2 NMI
3 Breakpoint
4 Overflow

� �

8 to 255 implementation-dependent

Note that these are not the same as the interrupt
numbers.

Exercise 58: On an IBM PC-compatible system what interrupt

number is used for a floppy-disk interrupt? What interrupt type

will the CPU see for this interrupt? At what addresses will the

CPU find the interrupt vector for this interrupt?

Exercise 59: When the a key on the keyboard is pressed, which

input on the 8259 PIC will be asserted? What will the signal

level be? What value will the 80386 read from the PIC during the

interrupt acknowledge cycle?

Programming the 8259 Interrupt
Controller

The initialization of the PIC is rather complicated
because it has many possible operating modes. The
PIC’s operating mode is normally initialized by the
BIOS when the system is booted. We will only con-
sider the standard PIC operating modes used on the
IBM PC and only a system with a single (master)
PIC.

In it’s standard mode the PIC responds to an inter-
rupt request as follows:

� if the PIC believes that no ISR for the same
or a higher level is active, the interrupt request
(INTR) signal to the CPU is asserted

� if the CPU’s interrupt enable flag is set then an
interrupt acknowledge cycle will happen when
the current instruction terminates

� during the interrupt acknowledge cycle the
highest-priority interrupt request is captured
and saved (“latched”) in the PIC’s interrupt re-
quest register (IRR) and then the interrupt type

for this interrupt is read by the CPU from the
PIC. An interrupt acknowledge actually takes
two bus cycles.

The CPU uses the interrupt type to look up the
address of the ISR and runs it

� at the end of the ISR, a command byte (20H)
must be written to the PIC register at address
20H to re-enable interrupts at that level again.
This is called the ‘EOI’ (end-of interrupt) com-
mand.

Exercise 60: Why does the ISR have to issue an EOI instruc-

tion? How does the PIC know which ISR is terminating?

During normal operation only four operations
need to be performed on the PIC:

1. Initializing the interrupt vector.

2. Disabling (masking) and enabling interrupts
from a particular source. This is done by read-
ing the interrupt mask register (IMR) from lo-
cation 21H, using an AND or OR instruction to
set/clear particular interrupt mask bits.

3. Enabling interrupts on the CPU by setting the
interrupt enable bit (application software nor-
mally leaves the CPU interrupt flag set)

4. Re-enabling interrupts for a particular level
when the ISR for that level completes. This
is done with the EOI command as described
above.

Masking/Enabling Interrupts

There are three places where interrupts can be dis-
abled: (1) the PIC interrupt mask, (2) the PIC priority
logic, and (3) the CPU’s interrupt enable flag.

First, if the PIC interrupt mask bit is set then the
interrupt request will not be recognized. Second, if
the PIC believes an ISR for a higher level interrupt is
still executing due to no EOI command having been
given for that interrupt level it will not pass on in-
terrupts of the same or lower levels. Finally, if the
interrupt enable bit in the CPU’s flags register is not
set then the interrupt request signal from the PIC will
be ignored.

5

Exercise 61: How do an interrupt “mask” bit (e.g. in the PIC) and

an interrupt “enable” bit (e.g. in the CPU flags register) differ?

Note that the CPU’s interrupt enable flag is cleared
when an interrupt happens and is restored when the
process returns from the ISR via the IRET instruc-
tion. This means that ISRs can’t be interrupted (not
even by a higher-level interrupt) unless interrupts are
explicitly re-enabled in the ISR.

Exercise 62: Can interrupts on an IBM-PC compatible computer

be nested (i.e. can an ISR be interrupted)? If so, under what

conditions? What instruction(s) are required to do this?

Exercise 63: How many levels deep can interrupts be nested

on the IBM PC if the ISR does not re-enable interrupts? If it re-

enables interrupts but does not issue EOI to the PIC? If it does

both? In each of these cases how much space would be required

on the interrupted program’s stack to hold the values pushed dur-

ing the interrupt acknowledge cycle?

Interrupt Latency

Often a peripheral must be serviced within a certain
time limit after an event. For example, a character
must be read from an input port before the next one
arrives.

The interrupt latency is the maximum time taken
to respond to an interrupt request. This will include
the time it takes for the current instruction to com-
plete plus the time for the CPU to respond to the in-
terrupt (e.g. save the CS, IP and flag registers on the
stack, acknowledge the interrupt and fetch the inter-
rupt vector).

If an ISR is already executing and cannot be inter-
rupted then this also increases the interrupt latency.
For this reason interrupt routines should be kept as
short as possible.

A typical device driver’s ISR only executes time-
critical functions such as moving data from/to the
peripheral to/from a buffer. Another portion of the
device driver deals with the bulk of the processing
and higher-level issues such as moving the disk drive
head, checking for errors, etc.

Race Conditions, Critical Sections
and Deadlock

A race condition is unpredictable behavior that de-
pends on the timing of events. Here we are con-

cerned with race conditions that arise because ISRs
execute asynchronously with respect to other code.

Consider the following sequence of code that in-
crements the variable count (which, for example,
could represent the number of bytes stored in a
buffer):

...
mov ax,count
------------------> ISR runs here
add ax,1
mov count,ax

...

Consider what happens if one of the things done
by the ISR is to increment count:

ISR: push ax
mov ax,count
add ax,1
mov count,ax
...
pop ax
iret

When the ISR returns, the code will save the old
value of count (now in AX) plus one to count and
thus cancelling the increment operation performed
by the ISR.

Exercise 64: Assume count is initially set to 5. What is the

value of count after the ISR executes? What is the value after

the above routine ends? What would have been the value if the

ISR had executed before the first mov instruction? Is it possible

to predict when the ISR will happen?

A critical section is a part of a program that should
not be interrupted (typically because doing so would
introduce a race condition). To prevent interrupts
while this code is executing, a CLI instruction is
placed before the critical section and an STI instruc-
tion after it.

Race conditions are introduced whenever a data
structure are modified by both the ISR and non-ISR
code. Accesses to such data must be placed in a crit-
ical section. An even better approach is to redesign
data structures to eliminate such shared-write vari-
ables.

Deadlock happens when two threads of execution
(e.g. ISR code and non-ISR code) prevent each other
from continuing. An example might be an ISR that
needs to be “enabled” before it passes data to a pro-
gram. If, for some reason, the program decides to
wait for data to become available from the ISR with-
out first enabling it, the program will “deadlocked.”

6

Edge- and Level-Triggered Inter-
rupts

Interrupt request signals can be designed to be:

� edge-triggered: the interrupt acts as a clock and
the rising (or falling) edge of the interrupt signal
causes an interrupt to be recorded), or

� level-triggered: the interrupt controller samples
the interrupt signal at certain times and records
an interrupt if the input is asserted at that time.

On many microprocessor systems the interrupt re-
quest outputs from multiple peripherals can be con-
nected in a wired-or configuration to one active-low
interrupt request input.

However, on the PC both INT and IRx are active-
high signals and thus cannot be directly connected in
a wire-or’ed configuration. In addition, the 8259 PIC
is configured for edge-triggered interrupt inputs.

Exercise 65: Is it possible for several devices to share the same

PIC interrupt request line? What would happen if one device re-

quested an interrupt while another’s interrupt was still pending?

Sample 80x86/8259 ISR

The code below shows an 80x86 assembly language
program that includes an ISR. The program sets up
an ISR for interrupt type 8 (interrupt number 0, the
timer interrupt on the IBM PC). The ISR simply
decrements a count. The main program waits until
the count reaches zero and then terminates.

The timer interrupt on the IBM PC is driven by a
clock that generates one interrupt every 55 millisec-
onds. With the initial count value provided below the
program waits for 15 seconds before terminating.

The main program saves and restores the previous
timer interrupt vector.

When the ISR begins execution only the IP and
CS registers will have been initialized. Any other
segment registers that will be used in the ISR must
be explicitly loaded. In this case (a DOS .com file)
the code and data segments have the same segment
register values so DS can be loaded from CS.

On entry to the ISR only the IP, CS and flags reg-
isters will have been saved on the caller’s stack.

All other registers modified by the ISR must be
saved when starting the ISR and restored before re-
turning. Otherwise the state of the interrupted code
will be changed by the ISR and this is likely to cause
seemingly-random failures in other programs.

The code below uses segment over-rides: the seg-
ment register to be used to form the 20-bit address is
explicitly given along with the offset.

;
; example of program using an ISR for
; IBM PC timer interrupt
;

isrvec equ 4*(8+0) ; location of vector for IR0

; there are 4 bytes/vector and
; PIC supplies x+8 for IRx

code segment public ; .COM file setup
assume cs:code,ds:code
org 100h

start:
mov ax,0 ; use ExtraSegment to access
mov es,ax ; vectors in segment 0

; save old interrupt vector

mov ax,es:[isrvec]
mov prevoff,ax
mov ax,es:[isrvec+2]
mov prevseg,ax

; set up new vector

cli ; disable interrupts until
; vector update is complete

mov ax,offset isr
mov es:[isrvec],ax
mov ax,cs
mov es:[isrvec+2],ax

sti ; re-enable interrupts

; wait until ISR decrements count to zero

loop: mov ax,count
cmp ax,0
jnz loop

; restore old interrupt vector

cli ; disable interrupts until
; vector update is complete

mov ax,prevoff ; restore prev.
mov es:[isrvec],ax ; offset/segment
mov ax,prevseg
mov es:[isrvec+2],ax

sti ; re-enable
; interrupts

7

; return to DOS

int 20h

; storage for demonstration program

count dw 273
prevoff dw ?
prevseg dw ?

; The ISR:

isr:
mov cs:tmpax,ax ; save working registers
mov ax,ds
mov cs:tmpds,ax

mov ax,cs ; set up DS
mov ds,ax

mov ax,count
cmp ax,0 ; don’t decrement if already zero
jz isr1
sub ax,1 ; decrement count
mov count,ax

isr1:

mov al,20h ; write EOI command to 8259 PIC
out 20h,al ; to re-enable interrupts

mov ax,tmpds ; restore working registers
mov ds,ax
mov ax,cs:tmpax

iret ; return from ISR and
; re-enable interrupts

tmpax dw ?
tmpds dw ?

code ends
end start

Exercise 66: Why must interrupts be disabled while updating

the interrupt vector?

Exercise 67: How will the PC’s time of day change when this

program is run? What would happen if the interrupt were not

restored?

Exercise 68: Could “the stack” be used to save the values of

the registers that will be changed in the ISR? Which stack will

be used? What are the advantages and disadvantages of doing

so?

8

