
EECE 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

2000/2001 WINTER SESSION, TERM 1

The 80386SX Processor Bus and
Real-Mode Instruction Set

This chapter describes the signals and operation of the Intel 80386SX processor bus and describes a subset of the
80x86 architecture and instruction set.
After this lecture you should be able to draw diagrams for the processor bus signals described in this lecture and state
the values that would appear on the data and address buses during memory and I/O read and write cycles and for
interrupt acknowledge cycles.
While it’s not possible to cover all the details of the 80x86 instruction set you should learn enough about it to be able
to write simple routines to service interrupts and read/write data to/from I/O ports. In particular, you should be able
to:

� write a real-mode 8086 assembly language program including: (1) transfer of 8 and 16-bit data between regis-
ters and memory using register, immediate, direct, and register indirect addressing, (2) some essential arithmetic
and logic instructions on byte and 16-bit values, (3) stack push/pop, (4) input/output, (5) conditional and uncon-
ditional branches, (6) call/return, (7) interrupt/return, (8) essential pseudo-ops (org, db, dw).

� compute a physical address from segment and offset values,
� describe response of the 8086 CPU to software (INT) and external (NMI, IRQ) interrupts and return from inter-

rupts.

History

Intel’s first 16-bit CPU was the 8086. A version of
the 8086 that used an 8-bit data bus, the 8088, was
released later to permit lower-cost designs. The 8088
was used in the very popular IBM PC and many later
compatible machines.

Intel’s first 32-bit CPU was the 80386. It was
designed to be backwards-compatible with the large
amount of software which was available for the 8086.
The 80386 extended the data and address registers
to 32 bits. The Intel ’386 also included a sophisti-
cated memory management architecture that allowed
virtual memory and memory protection to be imple-
mented. This same basic 80386 architecture is used
in the latest generation of Pentium and compatible
processors.

This lecture describes the processor bus of the In-
tel 386SX, a version of the 386 with a 16-bit proces-
sor bus. The 386EX, the chip that we will use in the
lab, is similar to the 386SX but also integrates several
commonly-used peripherals in the same chip.

Processor Register Data Bus Address Bus
Model Width Width Width

8086 16 16 20
8088 16 8 20
i386 32 32 32
i386SX 32 16 24
i386EX 32 16 24
Pentium 32 64 32

kilo- Mega- and Giga-Bytes

It is common in talking about powers of two (e.g.
memory sizes) to use the suffixes kilo Mega, and
Giga although the values are somewhat (about 2%)
larger than the corresponding powers of ten. Express
powers of two using a value from the first column
below and a suffix from the second column.

lec2.tex 1

20 1
21 2
22 4
23 8
24 16
25 32
26 64
27 128
28 256
29 512

210 10241 kilo
220 10242 Mega
230 10243 Giga

Exercise 21: How much memory can be addressed by the 20,

24 and 32-bit addresses used by the different 80x86 address

buses?

’386SX CPU Signals

The 386SX is packaged in a 100-pin package. It has
a 24-bit address bus and a 16-bit data bus. The names
of the signals are shown below. Active-low signal
names are suffixed with ’#’ (i.e. BHE# � BHE* �

BHE)

Utility Bus

The utility bus includes the pins that are required for
the processor to operate properly but which are not
involved in data transfers. This includes the power,
ground, and clock pins.

The two most important pins on the CPU chip are
for power supply (Vcc � 3.3 or 5 V) and ground(Vss).
The processor will operate erratically (or not at all)
if the power supply is not held at the proper voltage.

The next most important signal is the clock,
CLK2. Output signal transitions happen immedi-
ately after the rising edge of CLK2 and inputs are
sampled on the rising edge of CLK2.

Figure 1 shows examples of data transfers over the
processor bus. Each transfer (read or write) is called
a bus cycle. Each bus cycle requires two or more
processor cycles (one T1 cycle plus one or more T2
cycles). Each of these processor cycles requires two
CLK2 periods. Figure 11 shows how two CLK2 cy-
cles make up a processor cycle and how two proces-
sor cycles (T1 and T2) make up a bus cycles.

Cycle Requires
processor cycle 2 CLK2 cycles T1, T2
bus cycle � � 2 processor cycles read, write, ...

Exercise 22: A 386SX CPU is operating with a 25 MHz CLK2

signal. What is the CLK2 period? How long does a processor

cycle take? How long does a bus cycle take?

Address and Data Busses

The 80386SX has a 16-bit data bus and a 24-bit ad-
dress bus. These signals are labelled D15 to D0 and
the A23 to A1 (not A0) respectively. To allow for ei-
ther 8-bit or 16-bit transfers the chip uses BHE* and
BLE* (high- and low-byte enable) signals indicate
to memory and I/O devices which byte(s) is/are be-
ing transferred. The BHE* indicates a transfer over
D15 to D8 and BLE* indicates a transfer over D7 to
D0.

BHE* and BLE* also indicate the memory ad-
dress being accessed: BLE* and BHE* indicate ad-
dresses with A0 � 0 and A0 � 1 respectively.

Unlike the Motorola 68000, this intel processor al-
lows 16-bit values to be written to odd addresses and
32-bit values to be written to addresses that are not
multiples of 4 (i.e. memory operations do not have
be word-aligned). Thus the value transfered over the
high-order byte of the data bus may or may not corre-
spond to the high-order byte of the value being writ-
ten.

1From Intel i386SX data sheet.

2

Figure 1: Examples of 80386SX Bus Cycles

Thus BHE* and BLE* indicate the address(es) be-
ing read or written — not the high- or low-order
bytes of a word.

Exercise 23: What signals does the Motorola 68000 use for this

purpose? How are they different?

Endianness

Intel processors, unlike Motorola processors, use so-
called “little-endian” byte order. This means that 16-
or 32-bit words are stored with the least-significant
byte at the lowest-numbered address. This can be
confusing. We normally write memory contents in
increasing address order from left to right; in little-
endian storage order the bytes in multi-byte words
appear in reverse order.
Exercise 24: The 16-bit word 1234H is to be written to address
1FFH by an Intel processor. What value will be stored at memory

location 1FFH? At which address will the other byte be stored?
Write your answer in the form of a table showing the final memory
contents:

Address Data

Which byte enable(s) will need to be asserted to store these
values? How many bus cycles will be required? Write out your
answers in the form of a table showing the values of the address
bus in binary, the values on the data bus in hex, and the values
of BHE* and BLE* (H or L) for each bus cycle.

Address Data Bus BHE* BLE*
0001 1111 111x
0010 0000 000x

What if the value 12345678H was to be stored at the same ad-

dress? What if the 16- and 32-bit values were written to address

100H?

3

Processors with wider address buses such at the
’386 or Pentium require more bus enable signals
(BE0*–BE3* or BE0*–BE7*).

Memory and I/O Address Spaces

The Motorola 68000 processors use conventional
memory read and write (MOVE) operations to do in-
put and output. Peripheral interfaces appear to the
processor as if they were memory locations.

The 80x86 processors can also use this type of
“memory-mapped” I/O but they also have available
special instructions (IN and OUT) for I/O operations.
A bus signal (M/IO*) indicates whether a bus cycle
is due to a memory or an I/O instruction. These spe-
cial I/O instructions allow more flexibility in the de-
sign of interfaces (e.g. extended cycles for I/O oper-
ations). I/O operations can only be done on the first
64kB of the I/O address space.

On the IBM PC and compatibles only the first 1k
of this I/O address space is available (0 to 3FFH).

Bus Control

In order to accommodate slow memory and I/O de-
vices the intel 80x86 processor buses use a READY*
input. If the READY* input is not asserted at the end
of a T2 processor cycle the 80386SX will generate
additional T2 cycle(s) (see below).

Exercise 25: What signal does the Motorola 68000 use to ex-

tend bus cycles?

The W/R* (write/read), D/C* (data/control), and
M/IO* (memory/I/O) output signals indicate the type
of bus cycle being executed (read, interrupt acknowl-
edge or write). The table below shows the possible
bus cycles:

D/C* M/IO* W/R* Bus Cycle
H H L memory read
H H H memory write
H L L I/O read
H L H I/O write
L H L instruction fetch
L L L interrupt acknowledge
L H H halt

Another processor bus signal, ADS*, indicates
that the contents of the address bus and the three sig-
nals above are valid.

Exercise 26: What are the equivalent signals on the Motorola

68000 processor bus?

Reset and Interrupts

As you might suspect, the RESET input resets the
processor. The CPU register contents are reset and
the program counter is set so that the CPU will fetch
the next instruction from memory location FFFFF0.
The memory at this location must therefore contain
instructions to restart the system.

The NMI and INTR inputs are used to generate
non-maskable and maskable interrupts respectively.

Asserting the NMI input causes the processor to
execute the interrupt handler pointed to by an inter-
rupt vector stored in memory.

If interrupts are enabled then asserting INTR
causes the CPU to carry out an interrupt acknowl-
edge bus cycle which reads a 1-byte interrupt num-
ber from the bus (typically from an interrupt con-
trol chip). The corresponding interrupt vector is then
fetched and the corresponding interrupt handler exe-
cuted as with NMI.

In either case the current instruction is completed
before the interrupt is recognized. We will cover the
details of the processor’s interrupt handling in detail
in a later lecture.

Other Signals

The ’386SX has a number of other signals which we
will not cover at this time. For completeness, these
are: HOLD and HOLDA (used by other devices to
request that the CPU to give up control of the pro-
cessor bus by disabling all of its outputs), LOCK*
(used to prevent other devices from requesting use
of the processor bus), NA* (“next address” used to
“pipeline” processor cycles), and PEREQ, BUSY*,
and ERROR* (used to interface to a floating point
co-processor).

80386SX Bus Cycles

Execution of each 80386SX instruction requires one
or more bus cycles. Typically, this involves read-
ing an instruction from memory possibly followed
by transfers of data between the CPU and memory
or I/O devices.

4

In addition to the read and write bus cycles from
memory and I/O address space the CPU can also ex-
ecute an interrupt acknowledge bus cycle and can be
in an idle or halted mode.

Read and Write Bus Cycles

Recall that a bus cycle requires at least two processor
cycles (T1 and T2). The address and bus control sig-
nals go active at the start of the T1 processor cycle.
During a write cycle the data bus is driven with the
value to be written during the second half of T1 and
this value stays on the bus into the first half of the
following T1 cycle. During a read cycle the proces-
sor loads the value from the data bus at the end of the
last T2 cycle.

Wait States

At the end of each T2 cycle the processor checks the
READY* input. If it is active, the bus cycle is termi-
nated, otherwise an additional T2 cycle is run. These
additional wait states are used to accommodate slow
memory by increasing the time available between
when the address is output and the time when the
data is required. If the memory being designed into a
system will require wait states, a wait state generator
circuit must be designed so that READY* is asserted
after two or more T2 states have elapsed following
the start of the bus cycle.

Input and Output Cycles

I/O read/write cycles are the same as memory
read/write cycles except that the M/IO* signal is low.

Interrupt Acknowledge Cycle

An interrupt acknowledge cycle (performed in re-
sponse to INTR) is the same as a read cycle except
that the bus control signals are set to indicate an in-
terrupt acknowledge cycle. The value read during the
interrupt acknowledge cycle is then multiplied by 4
and used to load an interrupt vector from this address
in memory.

80x86 Instruction Set

Up or Down?

The “top of memory” is the highest-valued address.
A stack is said to “grow down” when it’s address gets
smaller as more values are put on the stack. How-
ever, many authors draw diagrams showing memory
contents in reverse order (with the lower-valued ad-
dresses above higher-valued ones). Be careful when
using these terms.

0000

FFFF

FFFF

0000

bottom

top

top

bottom

down
down

Real and Protected Modes

While the original Intel 16-bit CPUs, the 8086/8088
are no longer widely used, all later Intel processors
such as the 80386, 80486 and Pentium processors
can still execute 8086 software. The more recent
CPUs can be switched by software into either the
8086-compatible “real” mode or to the more power-
ful “protected” mode. Protected mode extends the
data and address registers from 16 to 32 bits and
includes support for memory protection and virtual
memory. Unfortunately, the details of interrupt han-
dling in protected mode are too complex to cover
in this course so we will restrict ourselves to 80x86
real-mode programming.

Registers

The 8086 includes four general-purpose 16-bit data
registers (AX, BX, CX and DX). These register can
be used in arithmetic or logic operations and as tem-
porary storage. The most/least significant byte of
each register can also be addressed directly (e.g. AL
is the LS byte of AX, CH is MS byte of CX, etc.).

5

15 0

AX

BX

CX

DX

AH AL

BH BL

CH CL

DH DL

Each register also has a special purpose as we’ll
discuss later:

Register Special Purpose
AX multiply/divide
BX index register for MOVE
CX count register for string operations
DX port address for IN and OUT

There is a 16-bit program flags register. Three of
the bits indicate whether the result of the most re-
cent arithmetic/logical instruction was zero (ZF), has
a negative sign (SF), or generated a carry or bor-
row (CF) from the most-significant bit. The over-
flow bit (OF) indicates overflow if the operands are
signed (it’s the carry/borrow from the second most-
significant bit). A fourth bit, the interrupt enable bit
(IF) controls whether maskable interrupt requests (on
the IRQ pin) are recognized.

CFZFSFIFOF

15 8 7 0

The address of the next instruction to be executed
is held in a 16-bit instruction pointer (IP) register (the
“program counter”). A 16-bit stack pointer (SP) im-
plements a stack to support subroutine calls and in-
terrupts/exceptions.

15 0

IP

15 0

SP

Exercise 27: How many bytes can be addressed by a 16-bit

value?

There are also three segment registers (CS, DS,
SS) which allow the code, data and stack to be placed
in any three 64 kByte “segments” within the CPU’s
1 megabyte (20-bit) address space as described later.

DS

CS

SS

15 0

Instruction Set

We only cover the small subset of the 8088 instruc-
tion set that is essential. In particular, we will not
mention various registers, addressing modes and in-
structions that could often provide faster ways of do-
ing things.

A summary of the 80x86 real-mode instruction set
is available on the course Web page and should be
printed out if you don’t have another reference.

Data Transfer

The MOV instruction is used to transfer 8 and 16-bit
data to and from registers. Either the source or des-
tination has to be a register. The other operand can
come from another register, from memory, from im-
mediate data (a value included in the instruction) or
from a memory location “pointed at” by register BX.
For example, if COUNT is the label of a memory lo-
cation the following are possible assembly-language
instructions :

; register: move contents of BX to AX
MOV AX,BX

; direct: move contents of the address labelled
; COUNT to AX

MOV AX,COUNT
; immediate: load CX with the value 240

MOV CX,0F0H
; memory: load CX with the value at
; address 240

MOV CX,[0F0H]
; register indirect: move contents of AL
; to memory location in BX

MOV [BX],AL

Most 80x86 assemblers keep track of the type of
each symbol (byte or word, memory reference or
number) and require a type “override” when the sym-
bol is used in a different way. The OFFSET operator
converts a memory reference to a 16-bit value. For
example:

MOV BX,COUNT ; load the value at location COUNT
MOV BX,OFFSET COUNT ; load the offset of COUNT

6

16-bit registers can be pushed (the SP is first
decremented by two and then the is value stored at
the address in SP) or popped (the value is restored
from the memory at SP and then SP is incremented
by 2). For example:

PUSH AX ; push contents of AX
POP BX ; restore into BX

There are some things to note about Intel assembly
language syntax:

� the order of the operands is destination,source
— the reverse of that used on the 68000!

� semicolons begin a comment

� the suffix ’H’ is used to indicate a hexadecimal
constant, if the constant begins with a letter it
must be prefixed with a zero to distinguish it
from a label

� the suffix ’B’ indicates a binary constant

� square brackets indicate indirect addressing or
direct addressing to memory (with a constant)

� the size of the transfer (byte or word) is deter-
mined by the size of the register

Exercise 28: What is the difference between the operands [BX]

and BX? What about [1000H] and 1000H? Which of these can

be used as the destination of a MOV instruction? Which of these

can used as the source?

I/O Operations

The 8086 has separate I/O and memory address
spaces. Values in the I/O space are accessed with
IN and OUT instructions. The port address is loaded
into DX and the data is read/written to/from AL or
AX:

MOV DX,372H ; load DX with port address
OUT DX,AL ; output byte in AL to port

; 372 (hex)
IN AX,DX ; input word to AX

Arithmetic/Logic

Arithmetic and logic instructions can be performed
on byte and 16-bit values. The first operand has to
be a register and the result is stored in that register.

; increment BX by 4
ADD BX,4

; subtract 1 from AL
SUB AL,1

; increment BX
INC BX

; compare (subtract and set flags
; but without storing result)

CMP AX,MAX
; mask in LS 4 bits of AL

AND AL,0FH
; divide AX by four

SHR AX,2
; set MS bit of CX

OR CX,8000H
; clear AX

XOR AX,AX

Exercise 29: Explain how the AND, SHR (shift right), OR

and XOR instructions achieve the results given in the comments

above.

Control Transfer

Conditional jumps transfer control to another address
depending on the values of the flags in the flag reg-
ister. Conditional jumps are restricted to a range of
-128 to +127 bytes from the next instruction while
unconditional jumps can be to any point.

; jump if last result was zero (two values equal)
JZ skip

; jump if greater than or equal
JGE notneg

; jump if below
JB smaller

; unconditional jump:
JMP loop

The assembly-language equivalent of an if state-
ment in a high-level language is a CoMPare opera-
tion followed by a conditional jump.

Different conditional jumps are used for compar-
isons of signed (JG, JGE, JL, JLE depend on OF and
CF) and unsigned values (JA, JAE, JB, JBE depend
on CF only).

Exercise 30: If a and b were signed 16-bit values, what would

be the assembly-language equivalent of the C-language state-

ment if (a != 0) goto LOOP;? What about if (a <=

b) return ;? What if they were unsigned?

7

The CALL and RET instructions call and return from
subroutines. The processor pushes IP (the address
of the next instruction) on the stack during a CALL
instruction and the contents of IP are popped by the
RET instructions. For example:

CALL readchar
...

readchar:
...
RET

Exercise 31: Write a sequence of a MOVE, a PUSH and a

RET instruction that has the same effect as the instruction JMP

1234H?

Segment/Offset Addressing

Since address registers and address operands are only
16 bits they can only address 64k bytes. In order to
address the 20-bit address range of the 8086, physi-
cal addresses (those that are put on the address bus)
are always formed by adding the values of one of
the segment registers to the 16-bit “offset” address to
form a 20-bit address.

0

offset

segment

+ 0

physical address

The segment registers themselves only contain the
most-significant 16 bits of the 20-bit value that is
contributed by the segment registers. The least sig-
nificant four bits of the segment address are always
zero.

By default, the DS (data segment) register is used
to form addresses associated with data transfer in-
structions (e.g. MOV), the CS (code segment) regis-
ter is added to the IP register (e.g. for JMP or CALL),
and SS is added to SP (e.g. PUSH or to save/restore
addresses during CALL/RET or INT instructions).
There is also an “extra” segment register, ES, that
is used when access to other locations in memory is
required.

Exercise 32: If DS contains 0100H, what address will be written

by the instruction MOV [2000H],AL? If CX contains 1122H, SP

contains 1234H, and SS contains 2000H, what addresses will

change and what will be their values when the PUSH CX instruc-

tion is executed?

The use of segment registers reduces the size of
pointers to 16 bits. This reduces the code size but
also restricts the addressing range of a pointer to
64k bytes. Performing address arithmetic within data
structures larger than 64k is awkward. This is the
biggest drawback of the 8086 architecture.

For simplicity will restrict ourselves to short pro-
grams where all of the code, data and stack are placed
into the same 64k segment (so that CS=DS=SS).

Interrupts and Exceptions

In addition to interrupts caused by external events
(such as an IRQ signal), certain instructions such as
a dividing by zero or the INT instruction generate
exceptions.

The 8086 reserves the lower 1024 bytes of mem-
ory for an interrupt vector table. There is one
4-byte vector for each of the 256 possible inter-
rupt/exception numbers. When an interrupt or ex-
ception occurs, the processor: (1) pushes the flags
register, CS, and IP (in that order), (2) clears the in-
terrupt flag in the flags register, (3) loads IP (lower
word) and CS (higher word) from the appropriate in-
terrupt vector location, and (4) transfers control to
that location.

For external interrupts (IRQ or NMI) the interrupt
number is read from the data bus during an interrupt
acknowledge bus cycle. For internal interrupts (e.g.
INT instruction) the interrupt number is determined
by the instruction.

The INT instruction allows a program to generate
any of the 256 interrupts. This “software interrupt”
is typically used to access operating system services.

Exercise 33: MS-DOS programs use the INT 21H instruction

to invoke an “exception handler” that provides operating system

services. Where would the address of the entry point to these

DOS services be found? Where is the new IP? The new CS?

The CLI and STI instructions clear/set the
interrupt-enable bit in the flags register to dis-
able/enable external interrupts.

The IRET instruction pops the IP, CS and flags reg-
ister values (in that order) from the stack and thus
returns control to the instruction following the one
where interrupt or exception occurred.

Exercise 34: Programs typically store their local variables and

8

return addresses on the stack. What would happen if you used

RET instead of IRET to return from an interrupt?

Pseudo-Ops

A number of assembler directives (“pseudo-ops”) are
also required to write assembly language programs.
ORG specifies the location of code or data within the
segment, DB and DW are used to include bytes and
words of data in a program.

Example

This is a simple program that demonstrates the main
features of the 8086 instruction set. It uses the INT
instruction to “call” MS-DOS via the 21H software
interrupt handler to write characters to the screen.

; Sample 8086 assembly language program. This program
; prints the printable characters in a null-terminated
; string (similar to the unix ("strings" program).

; There is only one "segment" called "code" and the
; linker can assume DS and CS will be set to the right
; values for "code". The code begins at offset 100h
; within the segment "code" (the MS-DOS convention for
; .COM files).

code segment public
assume cs:code,ds:code
org 100h

start:
mov bx,offset msg ; bx points to string

loop:
mov al,[bx] ; load a character into al
cmp al,0 ; see if it’s a zero
jz done ; quit if so
cmp al,32 ; see if it’s printable
jl noprt ; don’t print if not
call printc ; otherwise print it

noprt:
inc bx ; point to next character
jmp loop ; and loop back

done:
int 20h ; return to DOS

; subroutine to print the byte in al

printc:
push ax ; save ax and dx
push dx
mov dl,al ; use DOS to
mov ah,02H ; print character
int 21H
pop dx ; restore ax and dx
pop ax
ret

msg db ’This’,9,31,32,’is’,20H,’a string.’,0

; example of how to reserve memory (not used above):

buf db 128 dup (?) ; 128 uninitialized bytes

code ends
end start

The OFFSET operator is used to tell this assembler
to use the offset of msg from the start of the code
segment instead of loading bx with the first word in
the buffer.

Exercise 35: Re-write this code in C using a pointer variable, p,

for BX. Use the C function putchar() instead of INT 21 function

2.

Writing Assembly Language Pro-
grams

The most efficient way to write an assembly lan-
guage program is to write it in C (or some other
higher-level language) and let a compiler generate
the assembly-language code. Very few programmers
can generate code that is faster or more compact than
a good C compiler.

If for some reason (typically due to poor man-
agement) you need to write assembly language, first
write it in C. Debug, test, profile and optimize (in that
order) the C version. Then covert as little of the code
to assembly-language as necessary to meet the pe-
formance requirements. Typically this is worthwhile
when you need to make use of processor-specific fea-
tures (e.g. special-purpose signal-processing instruc-
tions). Isolate the assembly language in architecture-
specific files rather than using in-line assembler.

9

