
EECE 485 : DIGITAL INSTRUMENTATION FOR MECHANICAL SYSTEMS

2000/2001 WINTER SESSION TERM 1

Logic Design - PAL Implementation
Control systems often include digital logic circuits either to implement the controller or to interconnect the micro-
processor with peripheral interface chips. This lecture describes how to implement digitallogic using a simple pro-
grammable logic device (PLD) called a PAL (Programmable Array Logic).
After this lecture you should be able to use the CUPL logic design language to design a simple PAL-based circuit.

Programmable Logic

The choice of logic implementation technique (stan-
dard logic function ICs, programmable devices or
custom ASICs), will depend on factors such as the
number of units to be built, engineering expertise
available, the available design tools and the time al-
located for the design. Current practice is to use pro-
grammable logic devices (PALs and FPGAs (Field
Programmable Logic Arrays) to implement most
custom logic functions except on very high volume
designs which use ASICs.

There are a wide variety of programmable logic
devices available including PALs, CPLDs (com-
plex programmable logic devices) and FPGAs (field-
programmable logic devices). PALs are limited to
a simple sum-of-products architecture with 8 to 10
inputs and outputs. PALs are widely used to imple-
ment simple combinational logic circuits and state
machines. CPLDs typically include multiple PAL-
like elements in the same chip with programmable
interconnections between them. They often allow
more than one clock input and can implement sev-
eral independent functions. FPGAs typically include
hundreds of very simple logic blocks (e.g. a pro-
grammable 4-bit sum-of-products logic block with a
4-bit register) with very flexible interconnection ar-
rangements. It should be noted that different manu-
facturers have different interpretations of what these
terms mean. One manufacturer may call a certain
type of device a CPLD and another may call a simi-
lar device an FPGA.

PAL Architecture

Each output on a PAL implements a programmable
sum-of-products function of it’s inputs. The max-
imum number of terms in the sum depends on the
device. For the 16V8 device we will use in the lab

example, there can be up to 8 terms. Each product
term can include any combination of the inputs, the
outputs and their complements.

Registered PALs have D flip-flops on their outputs
with the sum-of-product results driving the inputs to
the flip-flops. This allows registered PALs to imple-
ment arbitrary state machines. Modern PAL devices
can mix registered and combinational outputs.

PALS are thus well suited to implementing the
simple combinational circuits and state machines
that we have seen in previous lectures.

PAL Design

PALs are usually designed using simple logic design
languages that describe the logic function to be per-
formed. An “assembler” then translates this func-
tional specification of the device into a programming
file (“JEDEC” file). This file is then used to program
the device using a device programmer similar to an
EPROM programmer.

Design using CUPL

We will use the CUPL programmable logic language
since it is reasonably popular and a version that sup-
ports the GAL16V8 device that we will use in the lab
is available for free. Other popular “languages” for
PLD design include ABEL and PALASM. FPGAs
are usually designed with one of two more powerful
hardware description languages, VHDL or Verilog.
A complete study of CUPL’s features would take sev-
eral lectures so here we will only cover the minimum
subset required for our relatively simple designs.

The CUPL input file uses the .pld file name suffix
by convention. Comments can be inserted anywhere
in the file using /* and */ delimiters. The input file
contains three sections:

lec10.tex 1

The first section includes a number of statements
to identify the design. The last statement of this sec-
tion gives a code to identify the device we will use.
In this course we will use G16V8. Note that each
statement ends with a semicolon.

The second section of the file uses PIN statements
to assign symbolic names to the input and output
pins. The 16V8 is a 20-pin package with 16 inputs
and 8 outputs (each output is also fed back and is
available as an input). Pins 1 to 9 and 11 are inputs
while pins 12 to 19 can be used as inputs or outputs.
If an input is to be used to clock flip-flops it must
be on pin 1. Variable names are case sensitive and
should begin with a letter.

The final section gives the logic equations that de-
fine the outputs (or register inputs) as functions of
the inputs. The operators !, &, # and $ correspond
to NOT, AND, OR and XOR. Adding .D extension
to the name of an output forces it to be a registered
(flip-flop) output. The extension must be added to
the output variable name so that the expression ap-
plies to the D input of the output flip-flop.

Simulation using CSIM

Since PAL logic design can be error-prone, a simula-
tor is almost always used to test PAL designs without
having to program devices and test them in the cir-
cuit. The input to the simulator is a description of the
generated PAL logic equations (for CUPL this is the
.abs file) and a set of test vectors. Each test vector
specifies a set of inputs to the PAL and the expected
outputs. The simulator compares the expected output
in the test vectors to that which would be produced
by the logic described in the .abs file. The simu-
lator output file notes any discrepancies between the
expected and simulated outputs.

The simulator input file is also divided into three
parts. The first part is the identification section and
is identical to that required for CUPL.

The second part of the file uses the ORDER com-
mand to define the input and output variables that
are to be included in the test vectors and the order
in which they appear in the test vectors and in the
output. As shown in the example, spaces may be
inserted in the simulation output by using a percent
sign followed by the number of spaces.

The VECTORS: line indicates the start of the test
vectors. The test vectors appear with one vector per
line (and no terminating semicolon). The values of
the input variables are specified as 0, 1, X (don’t
care), and C for a low-high-low clock pulse. The
values of the outputs are given as the logic levels H
or L.

CUPL and CSIM Examples

The listings show the CUPL and CSIM input and
output files for a simple sequential logic circuit.

Name Lab4 ;
PartNo 0 ;
Date 19/3/98 ;
Rev 1 ;
Designer Ed Casas ;
Company UBC ECE ;
Assembly 0 ;
Location 0 ;
Device g16v8 ;

Pin 1 = clk ; /* clock */
Pin 2 = show ; /* display enable */
Pin 19 = q2 ; /* state FFs */
Pin 18 = q1 ;
Pin 17 = q0 ;
Pin 16 = out2 ; /* outputs */
Pin 15 = out1 ;
Pin 14 = out0 ;

/* Random Number Generator using shift register with reset */

q2.d = (q2 $ q0) # (! (q2 # q1 # q0)) ;
q1.d = q2 ;
q0.d = q1 ;

out2 = show & q2 ; /* gated display */
out1 = show & q1 ;
out0 = show & q0 ;

Name Lab4 ;
PartNo 0 ;
Date 19/3/98 ;
Rev 1 ;
Designer Ed Casas ;
Company UBC ECE ;
Assembly 0 ;
Location 0 ;
Device g16v8 ;

/* (assumes the registers are initialized to 1’s) */

Order: clk, show, %4, out2, out1, out0 ;

Vectors:
C 1 L H H
C 1 H L H
C 1 L H L
C 1 L L H

2

C 1 H L L
C 0 L L L

3

