
EECE 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

2000/2001 WINTER SESSION, TERM 1

Introduction to Logic Design with VHDL
This chapter reviews the design of combinational and sequential logic and introduces the use of VHDL to design
combinational logic and state machines.
After this chapter you should be able to:

� convert an informal description of the behaviour of a combinational logic circuit into a truth table, a sum of
products boolean equation and a schematic,

� convert an informal description of a combinational logic circuit into a VHDL entity and architecture,
� design a state machine from an informal description of its operation, and
� write a VHDL description of a state machine.

Logic Variables and Signals

A logic variable can take on one of two values, typ-
ically called true and false (T and F). With active-
high logic true values are represented by a high (H)
voltage. With active-low logic true values are repre-
sented by a low (L) voltage. Variables using negative
logic are usually denoted by placing a bar over the
name (B), or an asterisk after the variable name (B

�

).
Warning: We will use or 1 and 0 to represent truth

values rather than voltage levels. However, some
people use 1 and 0 to represent voltage levels instead.
This can be very confusing.

Exercise 1: A chip has an input labelled OE that is used to turn

on (“enable”) its output. Is this input an active-high or active-low

signal? Will the output be enabled if the input is high? Will the

output be enabled if the input is 1?

To add to potential sources of confusion, an
overbar is sometimes used to indicate a logical com-
plement operation rather than a negative-true signal.
The only way to tell the difference is from the con-
text.

Combinational Logic

A combinational logic circuit is one where the out-
put is a function only of the current input – not of
any past inputs. A combinational logic circuit can be
represented as:

� a truth table that shows the output values for
each possible combination of input values,

� a boolean equation that defines the value of
each output variable as a function of the input
variables, or

� a schematic that shows a connection of hard-
ware logic gates (and possibly other devices)
that implement the circuit.

Truth Tables

For example, the truth table for a circuit with an out-
put that shows if its three inputs have an even number
of 1’s (even parity) would be:

a b c p
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1

Exercise 2: Fill in the last two rows.

Sum of Products Form

From the truth table we can obtain an expression for
each output as a function of the input variables.

The simplest method is to write a sum of products
expression. Each term in the sum corresponds to one
line of the truth table for which the desired output
variable is true (1). The term is the product of each

lec1.tex 1



input variable (if that variable is 1) or its comple-
ment (if that variable is 0). Each such term is called a
minterm and such an equation is said to be in canon-
ical form.

For example, the variable p above takes on a value
of 1 in four lines (the first, fourth, sixth and seventh
lines) so there would be four terms. The first term
corresponds to the case where the input variables are
a � 0, b � 0 and c � 0. So the term is a b c. Note
that this product will only be true when a, b and c
have the desired values, that is, only for the specific
combination of inputs on the first line.

If we form similar terms for the other lines where
the desired output variable takes on the value one and
then sum all these terms we will have an expression
that will evaluate to one only when required and will
evaluate to zero in all other cases.

Exercise 3: Write out the sum-of-products equation for p. Eval-

uate the expression for the first two lines in the table.

Common Combinational Logic Functions

In addition to the standard logic functions (AND,
OR, NOT, XOR, NAND, etc) some combinational
logic functions that are widely used include:

� a multiplexer is probably the most useful com-
binational logic circuit. It copies the value of
one of 2N inputs to a single output. The input is
selected by an N-bit input.

2
select

inputs output

� a decoder is a circuit with N inputs and 2N out-
puts. The input is treated as a binary number
and the output selected by the value of the in-
put is set true. The other outputs are false. This
circuit is often used for address decoding.

select 2Noutputs
N

� a priority encoder does the inverse operation.
The N output bits represent the number of the
(highest-numbered) input line.

� adders and comparators, perform arithmetic
operations on inputs interpreted as binary num-
bers

output+inputs >n

n
n+1

n

n

� a memory can implement an arbitrary combina-
tional logic function – the input is the address
and the stored data is the output.

ad
dr

es
s

da
tainput output

ROM

� drivers and buffers do not alter the logical value
but provide higher drive current, tri-state or
open drain or open collector (OC) outputs

output enable

o.c.

Exercise 4: Write out the truth table and the canonical (unsim-

plified) sum-of-products expression for a 2-to-1 multiplexer.

Example: 7-segment display driver

LED numeric displays typically use seven segments
labeled ‘a’ through ‘g’ to display a digit between 0
to 9:

a

b

c
d

e

f
g

This example shows the design of a circuit that
converts a 2-bit number into seven outputs that turn
the segments on and off to show numbers between 0
and 3. We use the variables A and B for the two input
bits and a to g for the seven outputs. We can build up
a truth table for this function as follows:

2



B A a b c d e f g
0 0 1 1 1 1 1 1 0
0 1 0 1 1 0 0 0 0
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 0 0 1

From the truth table we can then write out the sum
of products expressions for each of the outputs:

a = A B + AB + AB
b = 1
c = A B + AB + AB
d = A B + AB + AB
e = A B + AB
f = A B
g =

Exercise 5: Fill in the last line of the table. Draw the schematic

of a circuit that implements the logic function for the ‘g’ segment.

VHDL

VHDL is a Very-complex1 Hardware Description
Language that we will use to design logic circuits.

Example 1 - Signal Assignment

Let’s start with a simple example – a type of circuit
called a both that has one output signal (c) that is
the AND of two input signals (a and b). The file
example1.vhd contains the following VHDL de-
scription:

-- ’both’ : An AND gate

entity both is port (
a, b: in bit ;
c: out bit ) ;

end both ;

architecture rtl of both is
begin

c <= a and b ;
end rtl ;

First some observations on VHDL syntax:

� VHDL is case-insensitive. There are many cap-
italization styles. I prefer all lower-case. You
may use whichever style you wish as long as
you are consistent.

1Actually, the V stands for VHSIC. VHSIC stands for Very
High Speed IC.

� Everything following two dashes “--” on a line
is a comment and is ignored.

� Statements can be split across any number of
lines. A semicolon ends each statement. In-
dentation styles vary but an “end” should be in-
dented the same as its corresponding “begin”

� Entity and signal names begin with a letter fol-
lowed by letters, digits or underscore (“ ”) char-
acters.

A VHDL description has two parts: an entity part
and an architecture part. The entity part defines the
input and output signals for the device or “entity”
being designed while the architecture part describes
the behaviour of the entity.

Each architecture is made up of one or more state-
ments, all of which “execute2” at the same time (con-
currently). This is the critical difference between
VHDL and conventional programming languages –
VHDL allows us to specify concurrent behaviour.

The single statement in this example is a concur-
rent signal assignment that assigns the value of an
expression to the output signal c. You can interpret
a concurent signal assignment as a physical connec-
tion.

Expressions involving signals of type bit can use
the logical operators and, nand, or, nor, xor, xnor,
and not. not has higher precedence than the other
logical operators, all of which have equal prece-
dence. Parentheses can be used to force evaluation
in a certain order.

From this VHDL description a program called a
logic synthesizer can generate a circuit that has the
required functionality. In this case it’s not too sur-
prising that the result is the following circuit:

Exercise 6: Write a VHDL description for the circuit that would

generate the ’a’ and ’b’ outputs for the 7-segment LED driver

shown previously.

2The resulting hardware doesn’t actually “execute” but this
point of view is useful when using VHDL for simulation.

3



Example 2 - Selected Assignment

The selected assignment statement mimics the op-
eration of a multiplexer – the value assigned is se-
lected from several other expressions according to a
controlling expression. The following example de-
scribes a two-input multiplexer:

entity mux2 is
port (
a, b : in bit ;
sel : in bit ;
y : out bit ) ;

end mux2 ;

architecture rtl of mux2 is
begin

with sel select y <=
a when ’0’ ,
b when others ;

end rtl ;

which synthesizes to:

Note the following:

� the keyword others indicates the default value
to assign when none of the other values matches
the selection expression. Always include an
others clause.

� commas separate the clauses

� the synthesizer assumes active-high logic
(’1’ � H)

Example 3 - Bit Vectors

VHDL also allows signals of type bit_vector
which are one-dimensional arrays of bits that model
buses. Using bit vectors and selected signal assign-
ments we can easily convert a truth table into a
VHDL description. The next example is a VHDL
description of the 7-segment LED driver:

-- example 3: 7-segment LED driver for
-- 2-bit input values

entity led7 is port (
n: in bit_vector (1 downto 0) ;

seg: out bit_vector (6 downto 0) ) ;
end led7 ;

architecture rtl of led7 is
begin

with n select seg <=
"1111111" when "00" ,
"0110000" when "01" ,
"1101101" when "10" ,
"1111001" when others ;

end rtl ;

which synthesizes to:

The indices of bit vectors can be declared to
have increasing (to) or decreasing (downto) values.
downto is preferred so that constants read left-to-
right in the conventional order.
bit_vector constants are formed by enclosing an

ordered sequence of binary or hexadecimal values in
double quotes after a leading B (optional) or X re-
spectively. For example, B"1010_0101" and X"A5"
are equivalent.

Exercise 7: If x is declared as bit vector (0 to 3) and in

an architecture the assignment x<="0011" is made, what is the

value of x(3)? What if x had been declared as bit vector (3

downto 0)?

Substrings (“slices”) of vectors can be extracted
by specifying a range in the index expression. The
range must use the same order (“to” or “downto”) as
in the declaration.

Vectors can be concatenated using the ‘&’ op-
erator. For example y <= x(6 downto 0) & ’0’
would set y to the 8-bit value of x shifted left by 1
bit.

Exercise 8: Write a VHDL description that uses ‘&’ to assign y

a bit-reversed version of a 4-bit vector x.

The logical operators (e.g. and) can be applied to
bit_vectors and operate on a bit-by-bit basis.

4



Exercise 9: Write a VHDL description for a 2-to-4 decoder using

a 2-bit input and a 4-bit output.

Sequential Logic and State Machines

Sequential logic circuits are circuits whose outputs
are a function of their state as well as their current in-
puts. The state of a sequential circuit is the contents
of the memory devices in the circuit. All sequential
logic circuits have memory.

In theory, any sequential logic circuit, even the
most complex CPU, can be described as a single
state machine (also called a “finite” state machine or
FSM). There are two basic types of state machines.
In the Moore state machine the output is a function
only of the current state:

output

co
m

bi
na

tio
na

l
   

   
 lo

gi
c

memory
input

co
m

bi
na

tio
na

l
   

   
 lo

gi
c

whereas in the Mealy state machine the output is a
function of the current state and the current inputs:

output

co
m

bi
na

tio
na

l
   

   
 lo

gi
c

memory
input

co
m

bi
na

tio
na

l
   

   
 lo

gi
c

Moore state machines are simpler and are usually
preferred because it’s easier to ensure that they will
behave correctly for all inputs. However, since their
outputs only change on the clock edge they cannot
respond as quickly to changes in the input.

Exercise 10: Which signal in the above diagrams indicates the

current state?

Large sequential circuits such as microprocessors
have too much state to be described as a single state
machine.

Exercise 11: How may possible states are there for a CPU

containing 10,000 flip-flops?

A common approach is to split up the design of
complex logic circuits into storage registers and rel-
atively simple state machines. These state machines

then control transfers of data between the registers.
This type of design is called as Register Transfer
Level (RTL3) design. In this chapter we will study
the design of simple FSMs. Later, we will combine
these simple state machines with registers to build
complex devices.

Common Sequential Logic Circuits
� the flip-flop is the basic building block for de-

signing sequential logic circuits. It’s purpose is
to store one bit of state. There are many types
of flip-flops but the only one we will use is the
D (delay) flip-flop.

D Q

clock

The rising edge of a clock input causes the flip-
flop to store the value of the input (typically
called “D” and makes it available on the output
(typically “Q”). Thus the D flip-flop has a next-
state input (D), a state output (Q) and a clock
input. The D flip-flop state changes only on the
rising clock edge.

D

Q

clock
t

Exercise 12: Fill in the waveform for the Q signal in the

diagram above.

Usually all of the flip-flops in a circuit will have
the same signal applied to their clock inputs.
This synchronous operation guarantees that all
flip-flops will change their states at the same
time and makes it easy to estimate how fast a
clock we can use and still have the circuit will
operate properly. Avoid using different clock
signals whenever possible!

3RTL can also mean Register Transfer Language and Regis-
ter Transfer Logic

5



� A register is several D flip-flops with their
clocks tied together so that all the flip-flops are
loaded simultaneously.

� A latch is a register that whose output follows
the input (is transparent) when the clock is low.

clock

n n

Exercise 13: What would be another name for a 1-bit

register?

� A shift register is a circuit of several flip-flops
where the output of each flip-flop is connected
to the input of the adjacent flip-flop:

D Q D Q D Q

clock

serial
input

serial
output

On each clock pulse the state of each flip-flop
is transfered to the next flip-flop. This allows
the data shifted in at one “end” of the register to
appear at the other end after a delay equal to the
number of stages in the shift register. The flip-
flops of a shift registers can often be accessed
directly and this type of shift register can be
used for converting between serial and parallel
bit streams.

Exercise 14: Add the parallel outputs on the above dia-

gram.

� A counter is a circuit with an N-bit output
whose value increases by 1 with each clock.
A synchronous counter is a conventional state
machine and uses a combinational circuit (an
adder) to select the next count based on the cur-
rent count value. A ripple counter is a simpler
circuit in which the the Q output of one flip-flop
drives the clock input of the next counter stage
and the flip-flop input is its inverted output.

Exercise 15: Draw block diagrams of two-bit synchronous

and ripple counters showing the clock inputs to each flip-

flop. Is a ripple counter a synchronous logic circuit?

Design of State Machines

Step 1 - Inputs and Outputs

The first step in the design of a state machine is to
specify the the inputs, the states, and the outputs.
It’s important to ensure these items are identified cor-
rectly. If not, the remainder of the design effort will
be wasted.

Step 2 - States and Encodings

We then choose enough memory elements (typically
flip-flops) to represent all the possible states. n flip-
flops can be used to represent up to 2n states (e.g. 3
flip-flops can encode up to 8 states). In some cases
we can simplify the design of the state machine by
using more than the minimum number of flip-flops.

Exercise 16: If we used 8-bits of state information, how many

states could be represented? What if we used 8 bits of state but

added the condition that exactly one bit had to be set at any given

time (a so-called “one-hot encoding”)?

Although it’s possible to arbitrarily encode states
into combinations of flip-flop values, sometimes a
particular encoding of states can simplify the design.
For example, we can often simplify the combina-
tional circuit that generates the output by using the
outputs as the state variables plus, if necessary, addi-
tional flip-flops.

Step 3 - State Transitions

After the inputs, outputs and the state encodings have
been determined, the next step is to exhaustively enu-
merate all the possible combinations of state and in-
put. This is the simplest description of a sequential
circuit – a “state transition table” with one line for
each possible combination of state and inputs. Then,
based on the design’s requirements, we determine the
required output and next state for each line. In the
case of a Moore state machine there will be only one
possible output for each state.

Step 4 - Logic Design

Then we design the two blocks of combinational
logic that determine the next state and the output.
The design of these combinational circuits proceeds
as described previously.

6



Step 5 - Clock and Reset

We also need to apply a clock signal to the clock
inputs of the flip-flops. The sequential circuit will
change state on every rising edge of this clock sig-
nal. Practical circuits will also require some means
to initialize (reset) the circuit after power is first ap-
plied.

Example: Resetable 2-bit Counter

A resetable 2-bit counter has one input (the reset
signal) and two one-bit outputs. A two-bit counter
needs four states. Two flip-flops are sufficient to im-
plement four states. The transition conditions are
to go from one state (count) to the next state (next
higher count) if the reset input is not active, other-
wise to the zero state.

In this case we can simplify (eliminate) the de-
sign of the output combinational logic by choosing
the state variables to be the outputs and the state en-
codings to be the binary representation of the count.

If we use the variables R as the reset, Q0 and Q1
to represent the state of the system, and Q0’ and
Q1’ as the subsequent state, the tabular representa-
tion would be as follows:

Current State Input Next State
Q1 Q0 R Q1’ Q0’
0 0 0 0 1
0 1 0 1 0
1 0 0 1 1
1 1 0 0 0
X X 1 0 0

where ‘X’ is used to represent all possible values (of-
ten called a “don’t care”).

We can obtain the following sum-of-products ex-
pressions for these equations:

Q1’ = Q1Q0R + Q1Q0 R
Q0’ = Q1 Q0 R + Q1Q0 R

Exercise 17: Write the tabular description and draw the

schematic of a resetable 2-bit counter with decoded outputs (only

one of the four outputs is true at any time). You can assume the

counter will always be reset before being used. How does this

counter compare to the previous one?

Sequential Circuits in VHDL

The design of sequential circuits in VHDL requires
the use of the process statement. Process statements
can include sequential statements that execute one
after another as in conventional programming lan-
guages. However, for the logic synthesizer to be able
to convert a process to a logic circuit, the process
must have a very specific structure. You should use
only the simple three-line type of process shown be-
low. This is because signal assignments within a pro-
cess do not happen as you might expect and may lead
to strange results. In this course you may only use
processes to generate registers and may only use
the single-if structure shown below.

As an example, we can describe a D flip-flop in
VHDL as follows:

entity d_ff is port (
clk, d : in bit ;
q : out bit ) ;

end d_ff ;

architecture rtl of d_ff is
begin

process(clk)
begin

if clk’event and clk = ’1’ then
q <= d ;

end if ;
end process ;

end rtl ;

The expression clk’event (pronounced “clock
tick event”) is true when the value of clk has
changed since the last time the process was executed.
This is how we model “memory” in VHDL. In the
process the output q is only assigned a value if clk
changes and the new value is 1. When clk = 0 the
output retains its previous value. It’s necessary to
check for clk=1 to distinguish between rising and
falling edges of the clock.

FSMs in VHDL are implemented by using con-
current assignment statements (e.g. selected assign-
ments) to generate (1) the output and (2) the next
state from (a) the current state and (b) the inputs. The
process shown above is used to generate the flip-flops
that define the current state.

7



This corresponds to the following block diagram:
input output

next
state

current
 state

clock

 concurrent
assignments

 register
(process)

A VHDL description for a 2-bit counter could be
written as follows:

entity count2 is port (
clk : in bit ;
count_out : out bit_vector (1 downto 0) ) ;

end count2 ;

architecture rtl of count2 is
signal count, next_count : bit_vector (1 downto 0) ;

begin
-- combinational logic for next state
with count select next_count <=

"01" when "00",
"10" when "01",
"11" when "10",
"00" when others ;

-- combinational logic for output
count_out <= count ;

-- sequential logic
process(clk)
begin

if clk’event and clk = ’1’ then
count <= next_count ;

end if ;
end process ;

end rtl ;

Exercise 18: Draw the block diagram corresponding to this

VHDL description. Use a multiplexer for the selected assignment

and and a register for the state variables. Label the connections,

inputs and outputs with the corresponding VHDL signal names.

Note that two signals need to be defined for each
flip-flop or register in a design: one signal for the
input (next_count in this case) and one signal for
the output (count).

Also note that we must define a new signal for an
output if its value is to be used within the architec-
ture. This is simply a quirk of VHDL.

The synthesized circuit is:

Exercise 19: Identify the components in the schematic that were

created (“instantiated ”) the different parts of the VHDL code.

Exercise 20: Modify the diagram of the 2-bit counter by adding

a (synchronous) reset input and a 2-input, 2-bit multiplexer. Draw

a block diagram showing the modified circuit. Label the con-

nections and i/o with appropriate signal names. Write the cor-

responding VHDL description.

8


