
EECE 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

2000/2001 WINTER SESSION, TERM 1

Introduction to Assembly Language
The assembly language templates in these notes will enable you to convert C-like pseudo-code into assembly language.
After this section you should be able to:

� explain why you should (almost) never program in assembler
� be able to convert the following pseudo-code into 80x86 assembly language:

– variable declarations

– array subscripts

– assignment statements

– if/else statements

– while loops

Why not to Write Assembly Code

You should almost never write in assembly language
because:

� assembler is harder and slower to read and write

� assembler is more difficult to document

� The greatest optimization gains result from
changes to algorithms and data structures, not
from optimizing the implementation of a given
algorithm. Therefore large assembly language
programs are usually less efficient and harder to
optimize because they are difficult write and to
modify.

� it takes most programmers several months of
learning about a processor and an instruction set
before they can write assembly code that is as
efficient as that generated by a good optimizing
compiler.

� assembler is not portable.

The only things that should be written in assem-
bler are:

� code that is not possible to write in a high-level
language such as the code that does a context
save/restore (or context switch) before/after an
interrupt

� short functions (typically a few lines) that make
use of processor-specific instructions which are
not yet supported by your compiler. Some ex-
amples are a filter routine written using DSP-
processor instructions or an image transform us-
ing MMX instructions

How to Write Assembly Language

1. Start by writing simple C or C-like pseudo-code
that solves the given problem. Use only the sim-
ple statements described below.

2. Use the “templates” described below to convert
each C statement into the equivalent assembly-
language instructions.

Guidelines

Declare storage (using DW or DB) for each variable
required by your code.

Use the AX register for computing 16-bit results
and AL for computing 8-bit results. Do not use other
registers for computations.

Use BX only for computing addresses (indexed ad-
dressing), and DX only for IN and OUT instructions.

Save the result of each expression at the end of
each statement – do not try to save a value across
two statements by leaving it in AX or AL.

All labels should be unique. Functions should
have meaningful labels but targets of short branches

asm1.tex 1

within a function may assigned non-meaningful la-
bels. For example, the labels in the templates below
are of the form ln.

Notation

The notation op below refers to an arithmetic or log-
ical operator. For example, use ADD for +, SUB for -,
AND for &, OR for |, etc.)

The notation cop below is used for a compari-
son operator while cop* is its complement. The
following table shows the C comparison operators
and their complements along with the conditional
branch instruction to be used. The signed version is
used when the variables being compared are in two’s-
complement (C signed variables).

assembly assembly
C C signed unsigned
op op* op op
> <= JG JA
< >= JL JB
<= > JLE JBE
>= < JGE JAE
== != JE JE
!= == JNE JNE

The notation s1... stands for other statements (of
any type).

Variable Declarations

After the last instruction in your program, declare
each variable using DB (for char or 1-byte variables)
or DW (for int or 16-bit variables). For example, the
C declarations:

int x ;
char y, z[100] ;

can written as follows in assembler:

x dw 1 dup (?)
y db 1 dup (?)
z db 100 dup (?)

Assignment Statement Template

A simple assignment statement of the form:

z = x op y ;

can written as follows in assembler:

mov ax,x
op ax,y
mov z,ax

For example example, the C expression:

c = a - b ;

involving byte variables is written as follows in as-
sembler:

mov al,a
sub al,b
mov c,al

and the C expression:

e = d & 0x1000 ;

is written as follows:

mov ax,d
and ax,01000H
mov e,ax

Array Subscripting Template

To obtain a value involving an array subscript the BX
register is first loaded with the address of the desired
location. For example, the C code:

y = x[i] ;

is written as follows in assembler:

mov bx,offset x
add bx,i
mov ax,[bx]
mov y,ax

Note that if x is an array of word, the value of i
has to be multiplied by two before it is added to bx
(ADD i twice).

2

if/else Statement Template

The C code:

if (a cop b) {
s1...

} else {
s2...

}

is written as follows in assembler:

mov ax,a
cmp ax,b
cop* l1

s1...

jmp l2
l1:

s2...

l2:

For example, the C code:

if (a > b) {
c = 0 ;

} else {
c = 1 ;

}

is written as follows in assembler:

mov al,a
cmp al,b
jle l3

mov ax,0
mov c,ax

jmp l5

l3:

mov ax,1
mov c,ax

l5:

while Statement Template

A C while loop:

while (a cop b) {
s1...

}

is written as follows:

l1: mov ax,a
cmp ax,b
cop* l2

s1...

jmp l1

l2:

For example, the C for loop,
for(i=0 ; i<n ; i++) can be re-written
as follows in C:

i = 0 ;
while (i < n) {

s1...

i = i + 1 ;
}

which is written as follows in assembler:

mov ax,0
mov i,ax

l1: mov ax,i
cmp ax,n
jge l2

s1...

mov ax,i
add ax,1
mov i,ax

jmp l1

l2:

3

