
EECE 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

2000/2001 WINTER SESSION, TERM 1

Lab 4 - Interrupt-Driven Timer

Introduction

In this lab you will design and implement a timer
device that generates one interrupt every 4 seconds.
You will also write a program in 8086 assembly lan-
guage that initializes an interrupt vector and provides
an interrupt service routine (ISR) for the device.

Hardware Description

The following diagram shows a block diagram of the
device:

8.333 MHz
 clock

IOR*

IRQ7

LED

7−segment
LED decoder

7

address
 bus

 3−bit
 counter

 clock
divider

address
decoder

 read enable

comparator
 (= 4 ?)

reset

1
H

z

The device has a 3-bit counter that is incremented
once per second. A 1 Hz signal is generated using
a clock divider as in Lab 3. The count is displayed
on a 7-segment LED display as in Lab 2. The port
generates an interrupt by asserting the PC-104 bus
interrupt request number 7 (IRQ 7) when the counter
value reaches 4. This bus signal is connected to IR7
on the SBC’s 8259 PIC.

The port has a read-only register at I/O address
220H although nothing is put on the bus during a read
from this address to keep things simple. However,
reading this register should reset the counter to zero
(the read cycle will take longer than the clock pe-
riod). Thus, if your circuit and ISR are working prop-
erly the count should start again from 0 as soon as the
count reaches 4. If the ISR routine is not executed, or
if it does not read the proper address then the count
will continue up to 7 before “wrapping around.”

The address decoder is set up to recognize (and
reset the counter) for I/O memory reads of address
220H.

Your design must be synchronous and use only the
8.333 MHz PC-104 bus clock, SYSCLK.

Pre-Lab Assignment

Before the lab you must write and assemble the pro-
gram described below. You must also design the cir-
cuit and test it by simulating its operation (assume a
3 Hz clock rate when testing). You will be asked to
hand in your assembly code, the VHDL code and the
simulation waveforms at the start of the lab.

Assembly Language Program

Write an 8088 assembly-language program that does
the following:

� initializes the interrupt vector for IRQ 7 to point
to an interrupt service routine included within
your program

� enables interrupt number 7 in the PICs interrupt
mask register

� executes an infinite loop (a JMP instruction to
itself)

The ISR, included as part of your program, should
do the following:

� save any registers it will modify

� read the status register at 220H

� re-enable interrupts by issuing the EOI instruc-
tion to the PIC

� restore any saved registers

� return from the ISR

Refer to the lecture notes for details on the loca-
tions of interrupt vectors, 8086 interrupt service rou-
tines and the operation of the 8259 PIC.

lab4.tex 1

VHDL Description

Write, compile and test by simulation a VHDL de-
scription of the circuit described above. Use the fol-
lowing tests in your simulation to help verify its cor-
rect operation:

� wait for enough clock cycles to elapse so that
the count reaches 4. Verify that IRQ7 is asserted
and that the LED outputs are correct.

� read from memory location 220H. Verify that
the IRQ7 output is reset and that the count goes
back to zero.

� wait for enough clock cycles to show that the
count goes back to 1.

Print and Copy Files

Save the files projectname.asm (assembly language
source code), projectname.com (DOS executable),
projectname.acf (device and pin assignments), pro-
jectname.vhd (VHDL code), and projectname.scf
(test waveforms) to a floppy disk to bring it with you
to the lab. Print out the assembler and VHDL code
and the simulator output waveforms.

Lab Procedure

Connect the PC-104 address bus, IOR*, SYSCLK,
and IRQ7 to the FPGA pins on the interconnect
board as described in previous labs. Double-check
your connections and turn on the power.

Compile your VHDL code if you haven’t already
done so, and configure the FPGA as described in the
previous lab.

Observe the LED display. The count displayed on
the LED should run from 0 to 7 and wrap around
back to 0 when your ISR is not running.

Assemble, link and download your assembly code
if you haven’t already done so. Run your program on
the SBC.

If your device and program are working properly,
the LED will now count up to 3 and then get reset to
0 by the ISR.

When your device is working properly ask the TA
to check your work. He will make sure your device
works as required and ask you one or two questions
to verify your understanding of the material.

Report

Submit a short report with a written description of
your circuit. Include a listing of your assembly-
language program, the VHDL code and a printout of
the simulation waveforms that demonstrate correct
operation of your device.

2

