
EECE 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

2000/2001 WINTER SESSION, TERM 1

Lab 2 - LED Display Peripheral

Introduction

In this lab you will design a computer interface that
displays a digit between 0 and 4 on an LED. This
device will be hooked up to the system bus of a
PC-compatible single-board computer (SBC). You’ll
also write an assembly-language utility to change the
displayed digit.

You will use VHDL to design a circuit that loads
a register in response to write cycles to I/O memory
(port) address 224H. The LS three bits of the register
value should be decoded and drive a seven-segment
LED display as in the previous lab.

Your utility program will use DOS to read a char-
acter (‘0’ to ‘4’) from the user and write the corre-
sponding two-bit binary value (0 to 4) to I/O port
224H.

The diagram below shows how the components
are connected:

 single−board
computer (SBC)

interconnect
 board

FPGA

keyboard 7−segment
LED display

PC−104
 bus

user

parallel
port

download and
run programs

 serial
interface

configure FPGA

lab
PC

Hardware Description

The Single-Board Computer

The single-board computer (SBC) in the lab con-
tains a 386EX microprocessor, 2 MB of dynamic
RAM (DRAM), 1 MB of “flash” EEPROM used

as a virtual disk drive, three PC-compatible inter-
face ports (two serial and one parallel), and several
PC-compatible support chips (timers, interrupt- and
DMA-controllers and a real-time clock). The SBC
runs a modified version of the DOS operating sys-
tem from the flash disk when it is reset.

The SBC does not have a video display. Instead,
it uses the serial port to communicate with the user.
You use a “terminal emulator” program such as Win-
dows’ Hyperterm to issue DOS commands to the
SBC through the serial interface.

Although the SBC has enough memory to run sim-
ple DOS programs, it does not have software devel-
opment tools installed on it (editor, assembler, linker,
etc). You will edit and assemble programs on the
lab PC, transfer (“download”) the compiled program
(the executable .COM file) through the serial interface
to the SBC and then run your programs on the SBC.

The SBC has a system bus that allows peripheral
interface cards such as video displays, LAN cards,
analog interfaces, etc to be added to the computer.
The system bus used in the SBC is a PC-104 bus
which is electrically the same as the ISA bus found in
most PCs but with a more compact and robust 104-
pin connector. Most of the ISA/PC-104 bus signals
are the same as the signals found on the ’386SX pro-
cessor, but the PC-104 bus on the SBC in the lab only
supports an 8-bit data bus (D7 to D0) and a 20-bit ad-
dress bus (A19 to A0).

In this lab you will configure an FPGA to act as a
peripheral device that interfaces to the SBC through
the PC-104 bus. We will only use a subset of these
bus signals: the data bus (D7 to D0), the LS 10 bits
of the address bus (A9 to A0), and the IOW* sig-
nal. The IOW* signal is generated by combining the
CPU’s M/IO* and W/R* signals to create a signal
(strobe) that is low only during a write cycle to the
I/O space.

lab2.tex 1

these pins
connected
 together

these pins
connected
 together

 right row
FPGA pins

 left row
PC−104 bus

these pins
connected
 together

these pins
connected
 together

 right row
FPGA pins

 left row
PC−104 bus

Left Board Right Board

Figure 1: PC-104/FPGA Interconnection.

Interconnection Board

Connections between the PC-104 bus and the
FPGA’s pins are made by inserting jumper wires into
two solderless prototyping boards. As shown in fig-
ure 1 below, the five holes on each horizontal row of
the prototyping board are connected together. Each
row of five holes is also connected (under the board)
to either a PC-104 bus signal or to an FPGA pin. The
holes on the left rows connect to PC-104 bus sig-
nals and the holes on the right rows connect to FPGA
pins.

There are two interconnect boards. The left in-
terconnect board is used to connect the PC-104 data
and address bus and the board on the right is used to
connect the memory/I/O read/write strobes and the
interrupt request lines.

Table 1 shows the PC-104 signals and the FPGA
pins that are connected to each row of the intercon-
nect board. The rows are numbered starting at 1 for
the top row.

The FPGA connections to the LED are given in
the previous lab.

The Lab PC and Software

The lab PC will be used to:

� synthesize the VHDL code and configure the
FPGA using the Max+PlusII software

� edit the program using Notepad or the DOS
“Edit” program and assemble it using the free
“valarrow” assembler and linker

� download the program to the SBC, run it and
enter the digit to be displayed using the Hyper-
term terminal emulator

Left Board Right Board
left right left right
row row row row

PC-104 FPGA PC-104 FPGA
Row Signal Pin Signal Pin Row

1 D7 113 RESET 90 1
2 D6 114 IRQ9 163 2
3 D5 115 MEMW* 154 3
4 D4 116 MEMR* 156 4
5 D3 117 IOW* 157 5
6 D2 118 IOR* 158 6
7 D1 119 SYSCLK 211 7
8 D0 120 IRQ7 109 8

Ground 14

21 A9 138
22 A8 139
23 A7 141
24 A6 142
25 A5 143
26 A4 144
27 A3 146
28 A2 147
29 A1 148
30 A0 149
31 Ground

Table 1: PC-104 and FPGA Signal Locations.

Pre-Lab Assignment

Before the lab you must write, assemble and test (to
the extent possible) the utility program. You must
also design the circuit and test it by simulating its
operation. The TA will ask to see your assembler
and VHDL code and the simulation waveforms at the
start of the lab.

Assembly Language Program
� uses DOS to read a character from the keyboard.

The program loads the code 1 into AH and ex-
ecutes software interrupt 21H. DOS will read
a character from the standard input (keyboard)
and return it in AL.

� subtracts the ASCII value for the character zero
(’0’ or 030H) from the returned value to obtain

2

a value from 0 to 9

� outputs this value to I/O port 224H

� executes software interrupt 20H to return con-
trol back to DOS

The instructions for downloading and using the
free “valarrow” assembler are available on the course
web page. Download the assembler from the course
web page and assemble the code to create an exe-
cutable .COM file.

Run the program under DOS. The program should
wait for you to press a key and return to DOS. If the
operating system has memory protection or if port
224H is used by a peripheral on your computer, the
computer may give an error message or it may crash.
In this case comment out the OUT instruction and
test the rest of the code.

VHDL Code

Write a VHDL description for the circuit shown be-
low:

m
ux

re
gi

st
er

address bus

IOW*

data bus

address
decoder

LE
D

 d
ec

od
er

8

8

8

7

10

The inputs are the LS 10 bits of the address bus1,
the 8 bits of the data bus, and the IOW* write strobe.
The outputs are the seven LED segments as in the
previous lab.

The following figure shows the behaviour of the
address, data and IOW* signals during an I/O write
cycle:

address

data

IOW*

1The original IBM PC design only decoded the LS 10 bits of
I/O port addresses so all PC-compatible designs restrict them-
selves to using only the first 1024 ports.

Your VHDL code should use the IOW* signal as
if it were a clock. Use the rising edge of IOW* to
load the register. The value loaded into the regis-
ter should be either the value on the data bus (if the
value of the address bus is 224H) or else the current
value of the register. The register should be 8 bits
wide (although only three bits are actually required
and the synthesizer will warn you that the other bits
are not being used). Do not include the address de-
coding function in the process statement (i.e. do not
“gate the clock”). You can probably re-use the LED
decoder and register code from the previous lab.

Create simulation test waveforms consisting of
five bus cycles that demonstrate the following:

� an I/O write to address 224H of all five valid
values (0-4) changes the LED output to the cor-
rect value

� an I/O write of a value to address 21FH does not
change the LED output

Compile and simulate your VHDL description as
described in the previous lab.

Print and Copy Files

Save the files projectname.asm (assembly language
source code), projectname.com (DOS executable),
projectname.acf (device and pin assignments), pro-
jectname.vhd (VHDL code), and projectname.scf
(test waveforms) to a floppy disk to bring it with you
to the lab. Print out the assembler and VHDL code
and the simulator output waveforms.

Lab Procedure

Connect the PC-104 bus signals to the FPGA pins
on the interconnect board as described above. Use
the short 22-gauge jumper wires provided in the lab.
You may have to make your own jumpers using the
wire and wire strippers supplied in the lab. You will
need 14 jumpers: 10 jumpers for the address bus,
3 for the data bus (only the LS three bits are used in
this lab), and one for the IOW* strobe. Double-check
your connections and turn on the power.

Compile your VHDL code if you haven’t already
done so, and configure the FPGA as described in the
previous lab.

3

If you haven’t already done so, assemble your as-
sembly code (asm file) using asm to produce an ob-
ject (obj) file and then link the object file using val
to produce a binary (.com) file. All of these files
should be stored in your c:\max2work\yourname
directory.

Run the Windows Hyperterm program
(use the desktop shortcut or see under the
Start|Accessories|Communication menu).
Click on the 379com1 icon2. Press the reset button
on the interconnect board (top left corner). The SBC
will reboot and display a menu. Enter ‘x’ to exit the
start-up menu.

You can now issue DOS commands to the DOS
operating system running on the SBC (e.g. DIR, CD,
PATH, etc). To download your program to the SBC,
run the “dl” (download) command on the SBC. The
SBC will output junk to the screen. Use the Hypert-
erm menu option Transfer|Send File to bring up
a dialog box. Select your .com file and download it.
The file will be transferred between the development
PC and the SBC over the serial port. The negotiation
between the two PCs will take 10 to 15 seconds and
the transfer a few seconds more. When the transfer
is complete you will be returned to the SBC’s DOS
prompt.

Read the logic analyzer description given in the
appendix and connect the logic analyzer as follows:

� probes B1, B0, A7–A0 to PC-104 bus address
bus signals A9 to A0

� probe B7 to IOW*

� probes C2–C0 to LS 3 bits of the PC-104 data
bus

You will need another 14 jumper wires to hook up
the logic analyzer. Label probes B1, B0 and A7–
A0 as “ADDRESS”, B7 as “IOW*” and C1–C0 as
“DATA”. Set the logic analyzer to trigger on writes
to I/O address 224H. Press the logic analyzer “Run”
button and switch back to the Hyperterm window.

Run your program on the SBC. It should wait for
you to type in a digit, write to the register on the

2If there is no such icon, create a new configuration using the
Connect option “direct to COM1” with configuration settings of
9600 bps, 8 data bits, no parity, 1 stop bit and xon/xoff flow
control).

FPGA and then return control back to DOS. The
number should be shown on the LED. Switch to the
logic analyzer window and verify that the event was
captured.

When your device is working properly, ask the TA
to check your work. He will make sure your device
works as required and ask you one or two questions
to verify your understanding of the material.

Report

Submit a short report with a written description of
your circuit. Include a block diagram of your VHDL
circuit and another showing the connections between
the PC-104 bus, the FPGA and the LED, a list-
ing of your assembly-language program, the VHDL
code and a printout of the simulation waveforms that
demonstrate correct operation of your device.

Appendix - The Logic Analyzer

Introduction

In previous lab courses you’ve used an oscilloscope
to measure and display analog signals as voltage ver-
sus time. The corresponding instrument for measur-
ing digital logic circuits is called a logic analyzer.
The logic analyzer displays the values of logic sig-
nals as a function of time. This appendix describes
how to operate the PC-based logic analyzer that is
available in the lab. You can use this instrument to
view the signals on the interconnect board and this
will help you debug your circuit.

Logic analyzers connect to digital circuits through
sampling “pods” that contain buffers. The logic an-
alyzer in the lab has one pod with 24 one-bit inputs.
Each input is connected through a short, colour-
coded wire to your circuit. The 24 inputs are labelled
with a letter and a number (A7 to A0, B7 to B0, and
C7 to C0). The colour codes for the wires are the
same as the resistor colour codes (listed on the pod).
The white wire on each pod should be hooked up to
ground.

The logic analyzer can treat groups of signals as
buses and display the values of the bus signals in hex-
adecimal.

The logic analyzer does not sample continuously.
Instead, you define a “trigger condition” and press

4

the “run” button. The logic analyzer waits until the
trigger condition is true and then takes 32k samples
of the 24 input signals at a rate of up to 50 MHz.

To run the logic analyzer select the PC’s
“bi2450P” program menu item. Unfortunately, the
logic analyzer software is a DOS program that can
only run in full-screen mode. Press alt-Tab to switch
between the logic analyzer and other Windows pro-
grams.

Connect Probes

First, connect each of the white wires on the pod to
ground.

Then connect the probe wires to the signals you
want to monitor by putting a short jumper into the
connector on the end of the probe wire and connect-
ing the other end of the jumper to the appropriate row
on the interconnect board.

If you open the probe assignment dialog box (see
next section) while making the connections you will
be able to see the current signal level (H(igh), L(ow)
or changing) on that signal.

Assigning Channels

Select the menu item Setup|Probes to bring up a
dialog box where you can assign probes to signals.
For each signal you want to observe, type in a sig-
nal name, the radix to use when displaying the signal
value, and click on the probes to be assigned to that
signal. The leftmost probe is taken to be the most-
significant bit of a bus. Click on Done.

Trigger Conditions

Select the menu item Setup|Trigger Words to
bring up a trigger word dialog box. In the trigger
word “A” fields enter the signal values correspond-
ing to the event that you want the logic analyzer to
capture. Use ’X’ as a “don’t care” value.

For example, if you wanted to observe all write
cycles to a particular memory location, you would
put the desired address as the value in the address
signal field, and the asserted value as the value of the
write strobe signal while leaving the data bus value
set to ‘X’s (the logic analyzer will actually capture
data before and after that particular condition). Click
on Done.

Sample Rate

Click on Timebase in the main display window and
set the sample rate to 50 MHz.

Save Settings

Select the menu item Setup|Save Setup and select
a file name (in the max2work/yourname directory) to
save your settings in case you need to re-load them
later.

Capture Signals

Press the Run button to start the logic analyzer. When
the inputs match the trigger words the logic analyzer
will display the signals on the main display window.

The logic analyzer has many more features, some
of which will be introduced as necessary.

Select the menu item File|Quit to exit the pro-
gram.

5

