# Solution to Assignment 4 Memory Design and Timing Analysis

## **Question 1**

### **RAM Design**

- 1. *chips per bank*: To create a 16-bit wide data bus using 8-bit chips we need 16/8 = 2 chips per bank.
- 2. *number of banks*: Using a total of 4 chips and putting 2 chips/bank we can assemble 4/2 = 2 banks. Since each bank provides 32 k words of 2 bytes/word the total is  $32 \times 2 = 64$  k bytes per bank. This provides a total of 128k bytes of RAM.
- 3. *byte-select address lines*: To select from the 2 bytes available in parallel we need to use the  $\log_2 2 = 1$  least-significant CPU address bit (A0).
- 4. *word-select address lines:* To select one word in each bank we need  $\log_2 32k = 15$  address bus bits (A1 to A15).
- 5. *bank-select address lines:* The remaining (20 16 = 4) address lines (A16 to A19) are then used to select a bank.

The schematic of the RAM design is:



## **EPROM Design**

- 1. *chips per bank*: To create a 16-bit wide data bus using 4-bit chips we need 16/4 = 4 chips per bank.
- 2. *number of banks*: Using a total of 8 chips and putting 4 chips/bank we can assemble 8/4 = 2 banks. Since each bank provides 16 k words of 2 bytes/word the total is  $16 \times 2 = 32$  k bytes per bank. This provides a total of 64k bytes of RAM.
- 3. *byte-select address lines*: To select from the 2 bytes available in parallel we need to use the  $\log_2 2 = 1$  least-significant CPU address bit (A0, not available outside the CPU).
- 4. *word-select address lines:* To select one word in each bank we need  $\log_2 16k = 14$  address bus bits (A1 to A14).
- 5. *bank-select address lines:* The remaining (20 15 = 5) address lines (A16 to A19) are then used to select a bank.

The schematic of the EPROM design is:



## **Question 2**

```
library ieee ;
use ieee.std_logic_1164.all ;
entity decoder is
    port (
    a : in std_logic_vector (4 downto 0) ;
    ramcs0_n, ramcs1_n : out std_logic ;
    romcs0_n, romcs1_n : out std_logic ) ;
end decoder ;
architecture rtl of decoder is
begin
    ramcs0_n <= '0' when a = "00000" else '1' ;
    ramcs1_n <= '0' when a = "00001" else '1' ;
    romcs0_n <= '0' when a = "11110" else '1' ;
    romcs1_n <= '0' when a = "11111" else '1' ;
end rtl ;
```

The synthesized schematic for this design is:

## Question 3

### **Timing Specifications**

In the tables below I've used the following abbreviations:

| symbol           | meaning                    |  |
|------------------|----------------------------|--|
| S                | guaranteed timing response |  |
| R                | timing requirement         |  |
| С                | CLK2 period (40 ns)        |  |
| W <sub>min</sub> | minimum width              |  |
| W <sub>max</sub> | maximum width              |  |
| PD               | propagation delay          |  |

Note that if the margin is zero the specification is met.

#### **CPU Write Cycle**

All the signals are outputs.

|                         | R/S | type             | value | from    | to      |
|-------------------------|-----|------------------|-------|---------|---------|
| <i>t</i> <sub>41</sub>  | S   | W <sub>min</sub> | 0     | address | WR*     |
| <i>t</i> <sub>41a</sub> | S   | $W_{min}$        | 0     | CS*     | WR*     |
| <i>t</i> <sub>42</sub>  | S   | W <sub>min</sub> | 0     | WR*     | address |
| <i>t</i> <sub>42a</sub> | S   | W <sub>min</sub> | 0     | CW*     | CS*     |
| <i>t</i> <sub>42b</sub> | S   | W <sub>min</sub> | 10    | WR*     | address |
| <i>t</i> <sub>43</sub>  | S   | W <sub>min</sub> | 2C-10 | data    | WR*     |
| <i>t</i> <sub>44</sub>  | S   | W <sub>min</sub> | C-10  | WR*     | data    |
| <i>t</i> <sub>45</sub>  | S   | W <sub>max</sub> | C+10  | WR*     | data    |
| <i>t</i> <sub>46</sub>  | S   | $W_{min}$        | 2C-10 | WR*     | WR*     |

#### **CPU Read Cycle**

All signals except data bus are outputs.

|                         | R/S | type             | value | from    | to      |
|-------------------------|-----|------------------|-------|---------|---------|
| <i>t</i> <sub>47</sub>  | R   | W <sub>max</sub> | 4C-41 | address | data    |
| $t_{47a}$               | R   | W <sub>max</sub> | 4C-42 | CS*     | data    |
| <i>t</i> <sub>48</sub>  | R   | W <sub>max</sub> | 3C-39 | RD*     | data    |
| <i>t</i> 49             | R   | W <sub>min</sub> | 0     | RD*     | data    |
| <i>t</i> <sub>50</sub>  | R   | W <sub>max</sub> | С     | RD*     | data    |
| <i>t</i> <sub>51</sub>  | S   | W <sub>min</sub> | 0     | RD*     | address |
| <i>t</i> <sub>51a</sub> | S   | $W_{min}$        | 0     | RD*     | CS*     |
| <i>t</i> <sub>52</sub>  | S   | W <sub>min</sub> | 3C-13 | RD*     | RD*     |



#### **RAM Read Cycle**

All signals except data bus are inputs.

|                  | R/S | type             | value | from    | to      |
|------------------|-----|------------------|-------|---------|---------|
| t <sub>RC</sub>  | R   | W <sub>min</sub> | 70    | address | address |
| t <sub>AA</sub>  | S   | PD               | 70    | address | data    |
| t <sub>CO1</sub> | S   | PD               | 70    | CE1*    | data    |
| t <sub>CO2</sub> | S   | PD               | 70    | CE2     | data    |
| t <sub>OH</sub>  | S   | PD               | 10    | address | data    |
| $t_{LZ1}$        | S   | PD               | 10    | CE1*    | data    |
| t <sub>LZ2</sub> | S   | PD               | 10    | CE2     | data    |
| $t_{\rm HZ1}$    | S   | PD               | 30    | CE1*    | data    |
| $t_{\rm HZ2}$    | S   | PD               | 30    | CE2     | data    |

### **RAM Write Cycle**

All signals are inputs except data bus for  $t_{WHZ}$  and  $t_{OW}$ ). The RAM write cycle is WE\* controlled (Chart 1) because the CPU timing specifications show that WE\* (WR\*) goes active after CE1\* (CS1\*).

|                        | R/S | type             | value | from    | to      |
|------------------------|-----|------------------|-------|---------|---------|
| t <sub>WC</sub>        | R   | W <sub>min</sub> | 70    | address | address |
| t <sub>CW1</sub>       | R   | W <sub>min</sub> | 50    | CE1*    | CE1*    |
| t <sub>CW1</sub>       | R   | W <sub>min</sub> | 60    | CE2     | CE2     |
| t <sub>AW</sub>        | R   | setup            | 50    | address | WE*     |
| t <sub>WP</sub>        | R   | W <sub>min</sub> | 55    | WE*     | WE*     |
| t <sub>DW</sub>        | R   | setup            | 30    | data    | WE*     |
| t <sub>DH</sub>        | R   | hold             | 0     | WE*     | data    |
| t <sub>AS</sub>        | R   | W <sub>min</sub> | 0     | address | WE*     |
| t <sub>WR</sub>        | R   | hold             | 0     | WE*     | address |
| t <sub>WHZ</sub>       | S   | PD               | 30    | WE*     | data    |
| <i>t</i> <sub>OW</sub> | S   | PD               | 10    | WE*     | data    |

#### **Flash Read Cycle**

All signals except data bus are inputs.

|                         | R/S | type             | value | from     | to      |
|-------------------------|-----|------------------|-------|----------|---------|
| <i>t</i> <sub>RC</sub>  | R   | W <sub>min</sub> | 80    | address  | address |
| <i>t</i> <sub>ACE</sub> | S   | PD               | 80    | CE*      | data    |
| <i>t</i> <sub>AOE</sub> | S   | PD               | 40    | OE*      | data    |
| t <sub>AA</sub>         | S   | PD               | 80    | address  | data    |
| t <sub>OD</sub>         | S   | PD               | 20    | OE*, CE* | data    |
| t <sub>OH</sub>         | S   | PD               | 0     | OE*, CE* | data    |
|                         |     |                  |       | address  |         |

### **Timing Analysis**

We only need to verify that timing *requirements* are met.

#### **CPU Requirements - RAM Read Cycle**

Since RD\* is not connected to the RAM, the CPU timing requirements relative to RD\* cannot be checked.

|                         | required    | expression         | margin |
|-------------------------|-------------|--------------------|--------|
| <i>t</i> <sub>47</sub>  | 4C-41 = 119 | $t_{AA} = 70$      | 49     |
| <i>t</i> <sub>47a</sub> | 4C-42 = 118 | $t_{\rm CO1} = 70$ | 48     |
| <i>t</i> <sub>48</sub>  | 3C-39 = 81  | unknown            |        |
| <i>t</i> 49             | 0           | unknown            |        |
| <i>t</i> <sub>50</sub>  | C = 40      | unknown            |        |

**CPU Requirements - Flash Read Cycle** 

|                         | required    | expression        | margin |
|-------------------------|-------------|-------------------|--------|
| <i>t</i> <sub>47</sub>  | 4C-41 = 119 | $t_{AA} = 80$     | 39     |
| <i>t</i> <sub>47a</sub> | 4C-42 = 118 | $t_{ACE} = 80$    | 38     |
| <i>t</i> <sub>48</sub>  | 3C-39 = 81  | $t_{AOE} = 40$    | 41     |
| <i>t</i> 49             | 0           | $t_{\rm OH} = 0$  | 0      |
| <i>t</i> <sub>50</sub>  | C = 40      | $t_{\rm OD} = 20$ | 20     |

**RAM Requirements - CPU Read Cycle** 

|                 | required | expression | margin |
|-----------------|----------|------------|--------|
| t <sub>RC</sub> | 70       | 4C = 160   | 90     |

#### **RAM Requirements - CPU Write Cycle**

|                 | required | expression              | margin |
|-----------------|----------|-------------------------|--------|
| t <sub>WC</sub> | 70       | 4C = 160                | 90     |
| $t_{\rm CW1}$   | 50       | $t_{41a} + t_{46} = 70$ | 20     |
| $t_{\rm CW2}$   | 50       |                         |        |
| $t_{\rm AW}$    | 50       | $t_{41} + t_{46} = 70$  | 20     |
| t <sub>WP</sub> | 55       | $t_{46} = 70$           | 15     |
| $t_{\rm DW}$    | 30       | $t_{43} = 70$           | 40     |
| t <sub>DH</sub> | 0        | $t_{44} = 30$           | 30     |
| t <sub>AS</sub> | 0        | $t_{41} = 0$            | 0      |
| t <sub>WR</sub> | 0        | $t_{42} = 0$            | 0      |

## Flash Requirements - CPU Read Cycle

|                 | required | expression | margin |
|-----------------|----------|------------|--------|
| t <sub>RC</sub> | 80       | 4C = 160   | 80     |