
EECE 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

2000/2001 WINTER SESSION, TERM 1

Solution for Assignment 1 (Revised)
The first version of these solutions gave a solution for the wrong device (a 74LS168) for Question 1.

Question 1

The following solution attempts to reduce the com-
plexity of the design by separating the counting and
control functions. The four control inputs are com-
bined into a three-bit operation-select value. This
value is then used to select the next counter state.

The use of conditional assignments would have
simplified the description because of the prioritized
operation of the reset and load controls.

-- ELEC 379 Solution to Assignment 1
-- 74LS168 Decade Counter
-- Ed Casas

entity ec162 is
port (

sr, pe, cet, cep, cp : in bit ;
p : in bit_vector (3 downto 0) ;
q : out bit_vector (3 downto 0) ;
tc : out bit) ;

end ec162;

architecture rtl of ec162 is
signal c, nextc, cplus1 : bit_vector (3 downto 0) ;
signal operation : bit_vector (2 downto 0) ;
signal countenable : bit ;

begin

-- both cet and cep must be high to count
countenable <= cet and cep ;

-- build operation control word
operation <= sr & pe & countenable ;

-- operation selects source of next count
with operation select nextc <=

"0000" when "000",
"0000" when "001",
"0000" when "010",
"0000" when "011",
p when "100",
p when "101",
c when "110",
cplus1 when "111" ;

-- next-count lookup table
with c select cplus1 <=

"0001" when "0000",
"0010" when "0001",
"0011" when "0010",
"0100" when "0011",
"0101" when "0100",

"0110" when "0101",
"0111" when "0110",
"1000" when "0111",
"1001" when "1000",
"0000" when "1001",
"1011" when "1010",
"0100" when "1011",
"1101" when "1100",
"0100" when "1101",
"1111" when "1110",
"0000" when others ;

-- connect count to output
q <= c ;

-- terminal count
with c select tc <=

cet when "1001",
’0’ when others ;

-- instantiate the count register
process(cp)
begin

if cp’event and cp = ’1’ then
c <= nextc ;

end if ;
end process ;

end rtl ;

Figure 1 shows the simulation results.

Question 2

The best way to write assembly-language programs
that are more than a few lines long is to start with a
high-level version of the program. It is much easier
to write, debug and optimize a high-level description
of the code.

The ’C’ code for a solution to this problem is as
follows:

#include <stdio.h>
#include <dos.h>

void printhex1 (char c)
{
if (c < 10) {

putchar (c + ’0’) ;
} else {

putchar (c - 10 + ’A’) ;

sol1b.tex 1

[I] sr

[I] pe

[I] cet

[I] cep

[I] p

[O]tc

[O]q

[I] cp

5 D 5

0 5 6 7 8 9 0 1 2 3 4 5 D 4 5 6

500.0ns 1.0us 1.5us 2.0us 2.5us 3.0us 3.5us 4.0us 4.5us 5.0usName: Value:

Figure 1: Simulation Results.

}
}

void printhex4 (short i)
{

printhex1 ((i >> 12) & 0xf) ;
printhex1 ((i >> 8) & 0xf) ;
printhex1 ((i >> 4) & 0xf) ;
printhex1 ((i >> 0) & 0xf) ;

}

main()
{

short i ;
for (i=0 ; i < 64 ; i+=4) {
printhex4 (peek (0, i+2)) ;
putchar (’:’) ;
printhex4 (peek (0, i+0)) ;
putchar (’\r’) ;
putchar (’\n’) ;

}
}

where peek() is a function available in many DOS
compilers that returns the value of memory at the
given segment and offset.

Many C compilers have options to display the
compiled assembly language code. Most compilers
also optimize their output. I used this technique and
simplified the resulting code to come up with the fol-
lowing solution (the @-form labels were generated by
the compiler):

;
; ELEC 379 Solution for Assignment 1
; Ed Casas
;
; print the first 16 interrupt vectors
;

code segment public

assume cs:code,ds:code
org 100h

start:
jmp main

; purpose: print character using int 21H function 2
; arguments: AL - character to print
; returns: none

putchar:
push ax
push dx

mov dl,al ; use DOS to
mov ah,02h ; print character
int 21h

pop dx ; restore ax and dx
pop ax
ret

; purpose: print a value 0-15 as hex digit
; arguments: AL - value to print
; returns: none

printhex1:
push ax

cmp al,10 ; if less than 10
jge @2
add al,’0’ ; add ASCII ’0’
call putchar
jmp @1

@2: ; else subtract 10
add al,’A’-10 ; and add ASCII ’A’
call putchar

@1:
pop ax
ret

; purpose: print a 16-bit value as 4 hex digits
; arguments: AX - value to print
; returns: none

printhex4:

2

push ax
push bx
push cx

mov bx,ax ; save value in BX

mov cl,12 ; shift and
shr ax,cl
and al,15 ; mask in MS nybble
call printhex1 ; and print it

mov ax,bx ; same with
mov cl,8 ; second MS nybble
shr ax,cl
and al,15
call printhex1

mov ax,bx ; same with
mov cl,4 ; second LS nybble
shr ax,cl
and al,15
call printhex1

mov ax,bx ; same with LS
and al,15 ; nybble
call printhex1

pop cx
pop bx
pop ax
ret

; purpose: return word at memory location AX:BX
; arguments: AX - segment
; BX - offset
; returns: AX - value read from memory

peek:
push ds
mov ds,ax
mov ax,[bx]
pop ds
ret

; purpose: print first 16 interrupt vectors in
; hex in segment/offset format SSSS:OOOO
; arguments: none
; returns: none

; print values of first 16 interrupt vectors

main:
push ax
push bx
push cx

mov cx,0 ; initialize pointer into
; interrupt table
jmp @6

@8:
mov ax,0 ; get the segment value
mov bx,cx
add bx,2
call peek
call printhex4 ; and print it

mov al,’:’ ; print separator
call putchar

mov ax,0 ; get offset value
mov bx,cx
call peek
call printhex4 ; and print it

mov al,13 ; print CR/LF
call putchar
mov al,10
call putchar

add cx,4 ; point to next interrupt
@6:

cmp cx,64 ; loop back if not done
jl @8

pop cx
pop bx
pop ax

int 21h ; return to DOS

code ends
end start

3

