
EECE 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

2000/2001 WINTER SESSION, TERM 1

Assignment 2
RTL Design

Part 1 due Monday, November 6, 2000
Part 2 due Monday, November 13, 2000

Introduction

In this assignment you will design and test a simple
computer. The computer is composed of a CPU, a
ROM and a RAM:

CPU

address

data

8

ROM RAM

address

data

8

5 5

datainstruction

8

data

clock
write

The ROM and RAM each store 32 words of 8 bits
(1 byte).

The CPU has two registers: a 5-bit program
counter (PC) and an 8-bit accumulator (A). The CPU
design therefore contains:

� the PC datapath

� the A datapath

� the controller (called the “instruction decoder”)

Note that this CPU has independent data and in-
struction memories (this is called a “Harvard” archi-
tecture). The ROM is the instruction memory and is
addressed by the PC. The RAM is the data memory
and is addressed by the operand field of the current
instruction. The output of the instruction memory
is an instruction encoded as a 3-bit operation (op-
code) in the most significant (MS) 3 bits and a 5-bit
operand field in the LS 5 bits:

opcode operand

7 05 4... ...

The CPU can execute eight different instructions,
described below.

The design of this CPU allows one instruction to
be executed per clock cycle. This means that the in-
struction decoder is a combinational logic circuit, not
a state machine.

CPU Description

PC Datapath

The program counter (PC) datapath updates PC as
instructed by the controller. PC can be loaded with:
(1) PC, (2) PC+1 (to point to the next instruction),
(3) the current instruction’s operand field (to branch
to another instruction), or (4) zero (to reset the com-
puter).

The structure of the PC datapath is :

clock

 address field of
current instruction

PC program
counter+1

 PC
operation
 code

The PC datapath entity inputs are: the operand
field of the current instruction, the PC datapath con-
trol signal, a reset signal, and the clock.

The PC datapath entity output is: the PC register
value (the current value of the program counter).

A Datapath

The accumulator (A) datapath updates the accumu-
lator as instructed by the controller. A can be loaded
with: (1) A, (2) the data memory output, (3) the
operand field of the current instruction, (4) the re-
sult of an ’add’, ’not’, or ’and’ operation on the data
memory output and A.

The structure of the ALU datapath is:

asg2.tex 1

add

and

not

A

clock

data memory out

A(7:0) = 0

A(7) = 1

zero

negative

 address field of
current instruction

data memory
in

A operation
 code

The ALU datapath entity inputs are: the data
memory output, the operand field of the current in-
struction, the A datapath control signal, and the
clock.

The ALU datapath entity outputs are: the A reg-
ister value, a signal that is asserted when A is zero,
and a signal that is asserted when the MS bit of A is
set (A is negative).

Instruction Decoder (Controller)

The instruction decoder uses the current instruction
(the instruction memory location addressed by PC)
to control the A and PC datapaths.

The structure of the controller is:

A operation code

PC operation code

write

instruction
 decoderzero

negative

 opcode field of
current instruction

It’s inputs are: the MS 3 bits of the instruction
memory output (the current instruction), and the zero
and negative status signals from the ALU.

It’s outputs are: the A datapath control signal, the
PC datapath control signal, and the RAM read/write
control signal.

Design the controller so that the CPU can execute
the following instructions:

code description
LOAD 000 load - load A from the data

memory location addressed
by the instruction operand
field

STORE 001 store - store A in the data
memory location addressed
by the instruction operand
field

LOADI 010 load immediate - load A
with the current instruction’s
operand field (the MS 3 bits
are cleared)

ADD 011 add - load A with the sum of
A and the data memory loca-
tion addressed by the instruc-
tion operand field

NOT 100 not - load A with the one’s
complement of A

AND 101 and - load A with the AND of
A and the data memory loca-
tion addressed by the instruc-
tion operand field

JZ 110 jump on zero - if A is zero
load PC with the current in-
struction’s operand field

JN 111 jump on negative - if A is neg-
ative load PC with the current
instruction’s operand field

Note that an instruction’s 5-bit operand field can
be used for different purposes depending on the in-
struction: to load A with immediate data (LOADI),
to load PC with an instruction memory address (JZ
and JN instructions), ignored (NOT), or to address
data memory (other instructions).

Do not use the opcode itself as the PC and A con-
trol signals.

Memory Description

RAM

The data memory is a RAM with the following in-
puts: “data memory in”, address, read/write control
signal, and clock. The only output is a “data mem-
ory out” output. Use an array of data words and the
VHDL array indexing operator (()) to implement
the RAM.

2

The structure of the RAM is:

ad
dr

es
s

da
ta

 o
ut

da
ta

 in
w

rit
e

RAM

clock

from ALU
 output

 from
decoder

to ALU
input

address field
 of current
 instruction

ROM

The instruction memory is a ROM with a 5-bit ad-
dress input and an 8-bit output (the instruction). Use
a selected assignment statement to implement the
ROM. Note that you will not have to define the con-
tents of all locations (see below).

The structure of the ROM is:

current
instruction

current
 PC ROM

ad
dr

es
s

da
ta

The following example program loads the accu-
mulator with -3 (0FDH), increments it three times
until it becomes non-negative and then loops forever
on the last line. The code fragment shown below has
been assembled into a format suitable for including
in a selected assignment:

-- Instruction Address Opcode Operand
"01000000" when 0, -- LOADI 0
"00100000" when 1, -- STORE 0
"01000001" when 2, -- LOADI 1
"00100001" when 3, -- STORE 1
"01000010" when 4, -- LOADI 2
"10000000" when 5, -- NOT
"01100001" when 6, -- ADD 1
"11100110" when 7, -- JN 6
"11001000" when 8, -- JZ 8

Use the above program it to design the instruction
memory. Unused locations should be set to zero.

Assignment

Data Types

Create a package that defines types and constants for
your design. Define data types for instruction and
data words. Each should be 8 bits wide. The data

words should be subtypes of unsigned, the instruc-
tions should be subtypes of std_logic_vector.

Define a constant for each of the opcodes.
Define types and constant for the PC and A datap-

ath control signals. Enumerated types could be used
but they are not supported by the MaxPlusII wave-
form editor.

Design

Write VHDL entities and architectures for each of
the five parts (A and PC datapaths, controller, RAM
and ROM). Each entity should use the above pack-
age.

Testing

Test each part of your design separately. As a mini-
mum, ensure the following:

� the instruction memory gives the correct output
for each address input

� if you write the values 1, 0FFH 0EEH to memory
locations 0, 1 and 31 you can read back the same
values from these memory location.

� the PC can be reset, loaded, and incremented

� the ALU performs each of its six operations cor-
rectly (show at least one example of each oper-
ation)

� the controller generates the correct outputs for
each instruction, including the two possible out-
puts for each conditional jump instruction

Write a top-level entity that combines the five
components. This entity should have two inputs: re-
set and clock, and three outputs that allow you to
monitor the operation of the computer: PC, the in-
struction memory output, and A. Simulate the oper-
ation of your computer from reset until it executes
two iterations of the infinite loop (approximately 11
instructions).

For Part 1, submit the VHDL source code listings
and simulation outputs for the ROM, RAM and PC
datapath. For Part 2 submit listings and simulation
outputs for all parts (the five individual tests and the
test of the complete computer).

3

