
ELEC 379 : DESIGN OF DIGITAL AND M ICROCOMPUTER SYSTEMS

1998/99 WINTER SESSION, TERM 2

VHDL for Complex Designs
This lecture covers VHDL features that are useful when designing complex logic circuits.
After this lecture you should be able to:

� make library packages visible
� declare components and save them in packages
� instantiate components into an architecture
� declare std logic, std logic vector, signed and unsigned signals
� declare enumerated types and subtypes of array types and save them in packages
� use conditional signal assignments
� convert between std logic vector, unsigned and integer types
� instantiate tri-state outputs
� model RAM using arrays

Libraries, Packages and Components

As in the designof any complex system,in the de-
signof complex logic circuits it’s oftena goodidea
to decomposea designinto simplerparts. Eachof
thesepartscanbewritten andtestedseparately, per-
hapsby differentpeople.If thepartsaresufficiently
generalthenit’s oftenpossibleto re-usethemin fu-
tureprojects.

A similar principleholdsfor software. We break
down complex programsinto smallersubroutinesor
functions,eachof which is easierto write, test,and
re-use.

In VHDL, we canre-useanentity in anotheren-
tity’s architectureby declaringthe first entity as a
“component.” A componentdeclarationis very sim-
ilar to its correspondingentity declaration— it only
declarestheinputandoutputsignals.

In orderto avoid declaringeachcomponentin ev-
ery architecturewhereit is used,we typically place
componentdeclarationsin “packages.” A package
typically containsa set of componentdeclarations
for aparticularapplication.Packagesarethemselves
storedin “libraries”:

Library
�

component

component

Package
�

component

component

Package
�

To make the componentsin a packageavailable

(“visible”) in anotherdesign,we uselibrary state-
mentsto specify the libraries to be searchedand a
use statementfor eachpackagewe wish to use.The
two mostcommonlyusedlibrariesarecalledIEEE
andWORK.

In the Synopsys Design Compiler1 and
Max

�
PlusII VHDL implementations a library

is a directory and each packageis a file in that
directory. Thepackagefile is a databasecontaining
information about the componentsin the package
(thecomponentinputs,outputs,types,etc).

TheWORK library is alwaysavailablewithout hav-
ing to usea library statement.In DesignCompiler
theWORK library is a subdirectoryof the currentdi-
rectory called WORK while in Max

�
PlusII it is the

currentprojectdirectory.
library anduse statementsmustbeusedbefore

each designunit (entity or architecture)that makes
useof componentsfoundin thosepackages2. For ex-
ample,if you wantedto usethenumeric_bit pack-
agein theieee library youwoulduse:

library ieee ;
use ieee.numeric_bit.all ;

andif youwantedto usethedsp packagein theWORK
library youwoulduse:

1Thelogic synthesizerusedto createtheschematicsin these
lecturenotes.

2An exception:whenanarchitectureimmediatelyfollowsits
entityyouneednot repeatthelibrary anduse statements.

lec7.tex 1

use work.dsp.all ;

Exercise: Why is there no library statement in the second

example?

Creating Components

To createcomponents,we usually put component
declarationswithin a package declaration. When
we compile(or “analyze”) the file that containsthe
packageand componentdeclarationsthe informa-
tion about the componentsin the packagewill be
saved in a file with the nameof the package(and,
in Max

�
PlusII, the extension.vhdlview) in the

WORK library. Thecomponentsin thepackagecan
thenbeusedin otherdesignsby makingthemvisible
with ause statement.

A componentdeclarationis similar to an entity
declarationandsimply definesthe input andoutput
signals.Notethata componentdeclarationdoesnot
createhardware– only whenthecomponentis used
in anarchitectureis thehardwaregenerated(“instan-
tiated”).

For example,the following codedeclaresa pack-
agecalledflipflops. This packagecontainsonly
onecomponent,rs, with inputsr ands andanout-
putq whenit is compiled:

package flipflops is
component rs

port (r, s : in bit ; q : out bit) ;
end component ;

end flipflops ;

Exercise: If you this code was stored in a file called ff.vhd,

what file would be created? Where would it be placed?

Component Instantiation

Oncea componenthasbeenplacedin a package,it
can be used(“instantiated”) in an architecture. A
componentinstantiationsimply describeshow the
componentis “hookedup” to theothersignalsin the
architecture.It is thusaconcurrent statementlikethe
process statementratherthanasequential statement
andacomponentinstantiationcannotbeput insidea
process.

The following example shows how 2-input
exclusive-or gatescan be used to built a 4-input
parity-checkcircuit using componentinstantiation.
This type of descriptionis calledstructural VHDL
becausewe aredefiningthestructureratherthanthe
behaviour of thecircuit.

Therearetwo files: thefirst file, mypackage.vhd,
describesthe xor2 component(althougha typical
packagedefinesmorethanonecomponent):

-- define an xor2 component in a package

package xor_pkg is
component xor2

port (a, b : in bit ; x : out bit) ;
end component ;

end xor_pkg ;

the secondfile, parity.vhd, describesthe parity
entity thatusesthexor2 component:

-- parity function built from xor gates

use work.xor_pkg.all ;

entity parity is
port (a, b, c, d : in bit ; p : out bit) ;

end parity ;

architecture rtl of parity is
-- internal signals
signal x, y : bit ;

begin
x1: xor2 port map (a, b, x) ;
x2: xor2 port map (c, x, y) ;
x3: xor2 port map (d, y, p) ;

end rtl ;

Theresultingtop-level schematicfor theparity en-
tity is:

Exercise: Label the connections within the parity generator

schematic with the signal names used in the architecture.

Whentheparity.vhd file is compiled,thecom-
pilerwill searchthe(WORK) directoryfor thexor_pkg
package.

Although componentsdon’t necessarilyhave to
be created using VHDL descriptions(they may
have beencreatedusingdesignmethodsother than
VHDL), wecouldhave donesoby usingthefollow-
ing entity/architecturepair in file calledxor2.vhd:

2

-- xor gate

entity xor2 is
port (a, b : in bit ; x : out bit) ;

end xor2 ;

architecture rtl of xor2 is
begin

x <= a xor b ;
end rtl ;

Type Declarations

It’s oftenusefulto make up new typesof signalsfor
aproject.Wecandothis in VHDL by includingtype
declarationsin packages.Themostcommonusesfor
definingnew typesareto createsignalsof of agiven
width (i.e. a bus)andto declaretypesthatcanonly
haveoneof asetof possiblevalues(calledenumera-
tion types).

The following example shows how a package
called dsp_types that declaresthreenew types is
created:

package dsp_types is
type mode is (slow, medium, fast) ;
subtype word is bit_vector (15 downto 0) ;

end dsp_types ;

Notethatweneedto useasubtype declarationin
thesecondexamplebecausethebit_vector typeis
alreadydefined. Type declarationsareoften placed
in packagesto make themavailableto multiple de-
signunits.

Exercise: Write a declaration for a signal that controls

whether the value in a register should be loaded, incremented,

decremented, or held. Write the declaration for an 8-bit signal

type called byte.

std logic Packages

In the IEEE library therearetwo packagesthat are
oftenused.Thesepackagesdefinealternativesto the
bit andbit_vector typesfor logic design.

The first package, std_logic_1164, de-
fines the types std_logic (similar to bit) and
std_logic_vector (similar to bit_vector). The
advantageof the std_logic typesis that they can
have valuesotherthan’0’ and’1’. For example,an
std_logic signal can also have a high-impedance

value(’Z’). Thestd_logic_1164 packagealsore-
defines(“overloads”)thestandardbooleanoperators
sothatthey alsowork with std_logic signals.

Thesecondpackageis calledstd_logic_arith3

anddefinesthetypessigned andunsigned. These
aresubtypesof std_logic_vectorwith overloaded
operatorsthatallow themto beusedasbothvectors
of logic valuesandasabinaryvalues(in two’s com-
plementor unsignedrepresentations).Thehierarchy
of theselogic typescouldbedrawn asfollows:

std_logic std_logic_vector

signed unsigned

declared in
�
 std_logic_1164

declared in
�
 std_logic_arith

Although the standard arithmetic operators
(+, -, *, /, **) canbeappliedto signalsof type
signed or unsigned, it may not be practical or
possibleto synthesizecomplex operatorssuch as
multiplication,division or exponentiation.

For example,wecouldgeneratethecombinational
logic to build a4-bit adderusingthefollowing archi-
tecture:

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

entity adder4 is
port (
a, b : in unsigned (3 downto 0) ;
c : out unsigned (3 downto 0)) ;

end adder4 ;

architecture rtl of adder4 is
begin

c <= a + b ;
end rtl ;

Theresulting(rathermessy)schematicis:

3TheIEEEstandardis reallynumeric std but it’ snotwidely
usedyet.

3

Conditional Assignment

In thesamewaythataselectedassignmentstatement
modelsacasestatementin asequentialprogramming
language,aconditionalassignmentstatementmodels
an if/else statement. Like the selectedassignment
statement,it is alsoa concurrent statement.

For example,thefollowing circuit outputsthepo-
sitionof theleft-most’1’ bit in theinput:

library ieee ;
use ieee.std_logic_1164.all ;

entity nbits is port (
b : in std_logic_vector (3 downto 0) ;
n : out std_logic_vector (2 downto 0)) ;

end nbits ;

architecture rtl of nbits is
begin

n <=
"100" when b(3) = ’1’ else
"011" when b(2) = ’1’ else
"010" when b(1) = ’1’ else
"001" when b(0) = ’1’ else
"000" ;

end rtl ;

Notethattheconditionsaretestedin theorderthat
they appearin thestatementandonly thefirst value
whosecontrollingexpressionis trueis assigned.

In the samewas that we canview a selectedas-
signmentstatementastheVHDL modelfor a ROM
or lookup table,a conditionalassignmentstatement
canbeviewedtheVHDL descriptionof oneor more
multiplexers. For example,the structureof the ex-
ampleabove couldbedrawn as:

"100"

"011"

"010"
�

"001"
�

"000"
�

b(0)=’1’
�

b(1)=’1’
�

b(2)=’1’
�

b(3)=’1’
�

n

Synthesizingtheabove descriptionresultsin:

Exercise: Write a conditional assignment that models a 2-

to-1 multiplexer. Use an array x as the input, a signal sel to

select the input and a signal y as the output. Repeat for a 4-to-1

multiplexer (sel is now an array).

Type Conversion Functions

VHDL is a strongly-typedlanguage– eachfunction
or operatormust be suppliedargumentsof exactly
theright typeor thecompilerwill give anerrormes-
sage.Althoughmany functions/operators (e.g. and)
areoverloadedso that you can usethe samefunc-
tion/operatorwith morethanonetype,in many cases
youwill needto usetypeconversionfunctions.

The following table shows the type conversion
functionsfound in the thestd_logic_arith pack-
agein theieee library. Theabbreviationslv, un and
in areusedfor std_logic_vector, unsigned and
integer respectively.

from to function
lv un unsigned(x)
lv in conv integer(x)
un lv std logic vector(x)
un in conv integer(x)
in un conv unsigned(x,len)
in lv conv std logic vector(x,len)

Note that whenconverting aninteger you must
explicitly specify the numberof bits in the result
(len).

4

Tri-State Buses

A
�

tri-stateoutputcanbesetto the normalhigh and
low logic levels as well as to a third state: high-
impedance.This typeof outputis oftenusedwhere
differentdevicesdrivethesamebusatdifferenttimes
(e.g. a databus). Themostcommonway to specify
that an outputshouldbe set to the high-impedance
stateis to useasignalof typestd_logic andassign
it avalueof ’Z’.

The following exampleshows an implementation
of a 4-bit buffer with an enableoutput. When the
enableisnotassertedtheoutputis in high-impedance
mode:

library ieee ;
use ieee.std_logic_1164.all ;

entity tbuf is port (
d : in std_logic_vector (3 downto 0) ;
q : out std_logic_vector (3 downto 0) ;
en : in std_logic
) ;

end tbuf ;

architecture rtl of tbuf is
begin

q <=
d when en = ’1’ else
"ZZZZ" ;

end rtl ;

Theresultingschematicfor thetbuf is:

Tri-stateoutputsareusedprimarily to implement
bidirectionalbus signals. Suchsignalsaredeclared
of type inout ratherthanin or out and their val-
uescanbe usedwithin the architecture(unlike sig-
nalsof type out). Whenthe bus is to act asan in-
put, the bidirectionalbus signalsare driven to the
high-impedancestateandin this caseit’s the value
of signalsoutsidethe entity that determinethe sig-
nal’s value.

RAM Models

VHDL alsoallows the useof arrayswith signal in-
dicesto modelrandom-accessmemory(RAM). The
following exampledemonstratesthe useof VHDL
arraysaswell asbi-directionalbuses.We mustuse
thetype-conversionfunctionconv_integerbecause
the addressinput, a, is of typeunsigned while the
arrayindex mustbeof typeinteger.

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

entity ram is port (
-- bi-directional data signal
d : inout std_logic_vector (7 downto 0) ;
-- address input
a : in unsigned (1 downto 0) ;
-- output enable and write strobe (clock)
oe, wr : in std_logic) ;

end ram ;

architecture rtl of ram is
subtype byte is std_logic_vector (7 downto 0) ;
type byte_array is array (0 to 3) of byte ;
signal ram : byte_array ;

begin
-- output value is the indexed array element
d <=

ram(conv_integer(a)) when oe = ’1’ else
"ZZZZZZZZ" ;

-- register the indexed array element
process(wr)
begin

if wr’event and wr = ’1’ then
ram(conv_integer(a)) <= d ;

end if ;
end process ;

end rtl ;

Exercise: Modify the design above to create a 16-element,

4-bit wide RAM with separate input and output signals.

Theresultof synthesizingthisdescriptionis:

5

For many implementationtechnologies(FPGAs,
gatearrays,or standard-cellASICs) thereare usu-
ally vendor-specificwaysof implementingmemory
arraysthat give better results. However, using a
VHDL-only model with “random logic” as shown
above is moreportable.

Exercise: Why is portability desirable?

6

