ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS
1998/99 WINTER SESSION, TERM 2

PCInterruptStructureand8259DMA Controllers

This lecture covers the use of interrupts and the vectored interrupt mechanism used on the IBM PC using the Intel

8259 Programmable Interrupt Controller (PIC).

After thislecture you should be able to: (1) decide and explain why interrupts should or should not be used to service
a particular peripheral, (2) describe how the 8259 PIC handles multiple interrupt sources, and (3) write an ISR in
8088 assembly language to service interrupts generated by the 8259 PIC.

Overview of |/O Strategies

Whendesigningan1/O interfacewe mustmake two
fundamentaldecisions: (1) how we determinethat
a peripheralis readyto acceptor supply ore data,
and (2) how the datais to be transferredfrom the
peripheralto the computers memory For eachof
thesedecisiongherearetwo commonapproaches.

To decidewhenwe cantransferdatato/fromade-
vicewe havetwo choices.Thesimpleschoice called
polling, is to periodicallychecka statusregister The
seconcchoice,calledinterrupt-driven I/O, is to con-
nectasignalontheperipherato the CPU'sinterrupt
input. In this casewhenthe I/O device is readyto
transferdatathe executionof whaterer programhap-
pensto berunningis temporarilysuspendedndthe
CPUrunsanothemprogramaninterruptservicerou-
tine (ISR) thatperformsthel/O operations.

To actually transferthe datawe againhave two
choices. The simplestchoice, programmed 1/0O, is
for the processorto read/writethe datato/from a
dataregister on the peripheraland write/readit to
memory Anotherpossibility Direct Memory Access
(DMA), is to make useof hardwarethat“takesover”
the CPU bus andtransfersthe datadirectly from/to
the peripherakto/from memory

Thetablebelov summarizeshefour choices:

DataTransfer
When How
Simple:| Polling | Programmed/O
Complec: | Interrupts DMA

In this lecturewe cover the designof interrupt-
driver I/O deviceson IBM PC compatiblearchitec-
tures.

lec10. tex 1

I nterrupts ver sus Polling

I/0 devicessuchasprinters,keyboards etc. require
that the CPU executespecialcodeto “service” the
device everyoncein awhile. For example,incoming
character®r keystrokes have to bereadfrom a data
registeronthe peripherabndstoredin a buffer to be
usediaterby the operatingsystem.

Thetwo commonwaysof servicingdevicesareby
polling and by usinginterrupts. Polling meansthe
statusof theperipherals checled periodicallyto de-
terminewhetherit needgo beservicedfor example
whetherthedevice hasdatareadyto beread.Theal-
ternatveisto useinterrupts Theperipherainterface
is designedo assertheinterruptrequestnputto the
CPUwhenit requiresservice.Theresultof asserting
theinterruptsignalis to interruptnormalflow of con-
trol andto causeaninterruptserviceroutine(ISR) to
beexecutedo servicethedevice.

Polling mustbe donesuficiently fastthat datais
notlost. For example,if aserialinterfacecanreceve
up to 1000characterper secondandcanonly store
thelastcharactereceved,it mustbechecledatleast
onceper millisecondto avoid losing data. Sincewe
needto periodicallycheckeachdevice, regardlesof
whetherit requiresserviceor not, polling causesa
fixedoverheador eachinstalleddevice.

Another possiblygreaterdisadantageof polling
is that polling routinesmustbe integratedinto each
andevery programthatwill usethatperipheral Pro-
gramsmustbe written to periodically poll and ser
vice all theperipheralghey use.Suchtight coupling
betweenthe applicationandthe hardvwareis usually
undesirablexceptin thesimplestembeddegroces-
sorcontrolsystems.

Ontheotherhand,an ISR is only executedwhen
adevicerequiresattention(e.g.acharactehasbeen
receved). Thusthereis no fixed overheador using

interrupt-drven devices. In addition,sincelSRsop-
erateasynchronouslwith theexecutionof otherpro-
gramsijt is notnecessarfor applicationprogramgo
worry aboutthe detailsof the I/O devices. An ISRs
is usuallyprovided aspart of a device driver which
is usuallyincludedaspartof anoperatingsystem.

However, respondingo an interrupttypically re-
guiresexecutingadditionalclock cyclesto save the
processoistate,fetch the interruptnumberand the
correspondininterruptvector branchto thelSRand
laterrestorethe processostate.

Someto considerwhen decidingwhetherto use
polling or interruptsto decidewhento servicea de-
viceinclude:

e Canthedevicegeneraténterrupts?f thedevice
or the CPU arevery simplethenthey may not
have beendesignedto generateor respondto
interrupts.

How comple is theapplicationsoftware?If the
applicationis acomplex programthatwould be
difficult to modify in orderto addperiodicpolls
of thehardwarethenyou mayhave to useinter-
rupts. On the otherhand,if the applicationis
a controllerthat simply monitorssomesensors
andcontrolssomeactuatorshenpolling maybe
thebestapproach.

What is the maximumtime allowed between
polls? If the device needsto be servicedwith

very little delaythenit may not be practicalto

usepolling.

Whatfraction of polls areexpectedto resultin
datatransfer?If the rateat which the device is
polled is much higher than the averagetrans-
fer rate then a large fraction of polls will be
“wasted”and usinginterruptswill reducethis
polling overhead.

In generaluseinterruptswhenthe overheaddue
to polling would consumen large percentagef the
CPUtime orwouldcomplicatehedesignof thesoft-
ware.

Exercise: Data is arriving on a serial interface at 4000 char-
acters per second. If this device is serviced by polling, and each
character must be read before another one is received, what is
the maximum time allowed between polls? If each poll requires

10 microseconds to complete, what fraction of the CPU time is
always being used up even when the serial port is idle? What if
there were 8 similar devices installed in the computer?

Exercise: Data is being read from a tape drive interface at
100,000 characters per second. The overhead to service an in-
terrupt and return control to the interrupted program is 20 mi-
croseconds. Can this device use an ISR to transfer each charac-

ter?

Exercise: Responding to an interrupt typically takes consid-
erably longer than polling a status bit. Why are interrupts useful?

Alternative Approaches

It's also possibleto usea mixture of interruptand
polleddevices. For example,a device canbe polled
by an ISR that executesperiodicallydueto a clock
interrupt. This removesthe needto includepolling
routinesin eachapplication. We canalsopoll sev-
eral devicesin an ISR that runs periodically This
may be moreefficient that having eachdevice issue
independeninterrupts.

It is also commonfor devicesto buffer multiple
bytesandissueaninterruptonly whenthe buffer is
full (or empty). The ISR canthentransferthe com-
pletebuffer withoutincurringthe interruptoverhead
for eachbyte. For example,modemPC serialinter
facescanstoreupto 16 bytesbeforeissuinganinter
rupt. This cutsdown theinterruptoverheadby up to
16.

Becauseénterruptsoccurdueto eventsoutsidethe
computers control, it is usually difficult to predict
the exactsequencandratein which interruptswill
happenIn applicationsvherelossof dataabsolutely
cannotbe tolerated(e.g. wheresafetyis a concern)
the designemustensurethatall of the devicesser
viced by interruptscan be properly servicedunder
the worst-caseconditions. Typically this involves a
sequencef nestednterruptshappening:loselyone
afteranotherin a particularorder In someof these
systemst maybeeasieito usepolling to ensurecor-
rectworst-caséoehaiour.

Exercise: Consider a monitoring system in a nuclear power
plant. The system is hooked up to hundreds of sensors, each
of which can indicate an error condition. It is difficult to predict
exactly how often and in what order these error conditions will
happen. Would you design the system so that alarm conditions
generated interrupts? Why or why not?

Maskable, Non-M askable and Soft-
ware Interrupts

Like mary otherprocessorghe80386hastwo types
of interrupts: maskableand non-maskable.Mask-
ableinterrupts(asserte@dntheINTR pin) canbedis-
abledby clearingthe interrupt-enablélag (IF bit) in
theflagsregisterusingthe CLI instruction. A mask-
ableinterruptcausesninterruptacknaviedgecycle
(similar to a readcycle) which readsa 1-byteinter
rupt type from the interruptingperipheral. The in-
terrupttype (which is not the sameasthe interrupt
“number”)is thenmultiplied by four andaninterrupt
vectoris fetchedfrom thisaddress.

Non-maskableinterrupts (assertedon the NMI
pin) cannotbe disabled. ThusNMI is usuallyused
for very high priority eventssuchasimminentloss
of power or a hardware fault. A NMI always uses
the interruptvectorfor interrupttype 2, thusallow-
ing it executefaster For example,onthe PCNMI is
assertedf thehardvwarediscorersamemoryerrot

Software interruptsoperatein the sameway as
maskableand non-maskablénterruptsbut they are
generatedby executingan! NT instruction.Theinter
rupttypeis suppliedin theinstructionandso,again,
no interruptacknavledgecycleis required.

In addition, certainerror conditions(suchas di-
vide by zero) cancauseexceptions which behae in
thesameway assoftwareinterrupts.

Exercise: How could you execute the NMI handler on a PC if
you had to regain control after it executed? How else could you

do this if the NMI ISR did not return control?
Exercise: In “real mode” each 386 interrupt vector requires
4 bytes. What is the maximum number of bytes used up by an

interrupt vector table?

Interrupt Processing

The following sequenceof events happensin re-
sponsdo aninterrupt:

1. thecurrentinstructionis completed

2. andinterruptacknavledgecycle is run andthe
CPUreadsaninterrupttypefrom the hardware

3. the CPU saves the processorcontet (flags,
IP and CS registersare pushedon the current
stack)

4. theinterrupt-enabldlag (IF) is cleared

5. aninterruptvector (the location of the ISR) is
retrieved from the interruptvectortable at the
memoryaddresgjiven by the interruptnumber
multiplied by 4

6. the CPUbgginsexecutionof the ISR

Thefirst two stepsareskippedin the caseof NMI
andsoftwareinterrupts.

The8259inthelBM PC Architecture

The 80386CPU only hasoneinterruptrequestpin.
Although simple systemamay only have oneinter-
rupt source,most systemsmust have someway of
dealingwith multiple interrupt sources. The Intel
“way of doingthings”is to usea chip calleda pro-
grammablénterruptcontroller(PIC). Thischiptakes
asinputsinterruptrequestsignalsfrom up to 8 pe-
ripheralsand suppliesa single INTR signalto the

CPUasshawvn below:
80386SX CPU

8259 PIC
INTR INT IRO (—‘g
bus . R1=— &%
: 9]
o
data bus . g
IR7T =— &

address CS

ThePIC has3 purposes:

1. It allows eachof theindividual interruptsto be
enabledr disabledmasled).

2. It prioritizesinterruptssothatif multiple inter
ruptshappenat the sametime the onewith the
highestpriority is servicedfirst. The priorities
of the interruptsarefixed, with input IRO hav-
ing the highestpriority andIR7 the lowest. In-
terruptsof alower priority nothandledwhile an
ISR for a higherlevel interruptis actie.

3. It providesaninterrupttypethatthe CPUreads
during the interruptacknavledge cycle. This
tells the CPU which of the 8 possibleinter
ruptsoccurred.ThePIC onthelBM PCis pro-
grammedo respondwith aninterrupttype of 8

plus the particularinterruptsignal(e.qg. if IR3
wasassertedhe CPUwould readthe value11
from the PIC duringthe interruptacknavledge

cycle).

Thefollowing diagramshavs how eachof thein-
terruptrequestinesto the PIC canpotentiallycause
aninterruptrequesto bemadeto theCPU.TheCPU
readsthe interrupttype from the PIC during thein-
terruptacknavledgecycle andthenusesthis typeto
look uptheaddres®f theISRin theinterruptvector
table.

interrupt
vector address
table of
data
bus \ 1 ISR
. — .
interrupt > interrupt | cpu
number | IRX =2 PIC type
—
INT INTR

Unlike mary othermicroprocessorbothINT and
IRx areactive-highsignals.OnthelBM PCthelRx
inputsareconfiguredo beedge-triggeredThesede-
sign choicesprevent the sharingof interruptrequest
lines.

Oncethe PIC hasbeenconfigured therearetwo
control registersthat canbe reador written. Onthe
IBM PC and compatiblemachinesthe addressle-
coderfor PIC placesthesetwo registersin the /O
(not memory) addressspaceat locations20H and
21H.

OntheIBM AT andlater modelsthereare more
than8 interruptsourcesandtherearetwo PICs. The
slave PIC supportsan additional 8 interruptinputs
andrequestaninterruptfrom the mastePIC asif it
wereaninterruptingperipherabn IR2.

Exercise: What is the maximum number of interrupt sources
that could be handled using one master and multiple slave
PICs?

Exercise: Compare this approach to that used for vectored
interrupts on typical 68000 systems. How many interrupt sources
can be connected directly to a 68000? What if a priority encoder
is used? Are interrupt request lines active-high or active-low?
What device supplies the interrupt number or interrupt vector in
a typical 68000 system? After the interrupt is serviced a typical
68000 peripheral will un-assert it's interrupt request output. How
does an 80x86 system determine that the device no longer needs
attention?

Interrupt Number and Interrupt
Type

A commonsourceof confusionis the differencebe-
tweentheinterruptnumbeywhichis theinterruptre-
guestpin thatis asserte@ndtheinterrupttypewhich
is thevaluereadby the CPUduringtheinterruptac-
knowledgecycle or suppliedin anl NT instruction.
The interruptinputsto the PIC are connectedas
followsonalBM PC-compatiblesystem:

device
timer
keyboard
resered
serialport2
serialport 1
harddisk
floppy disk
printer1

interrupt
0

o Uk, WN PR

7

Thefollowing aresomeof theinterrupttypesthat
arepre-definedbn 80x86CPUs:

interrupttype | cause
0 Divide by Zero
1 SingleStep
2 NMI
3 Breakpoint
4 Overflow
810 255 implementation-deperdt

Note that theseare not the sameasthe interrupt
numbers.

Exercise: On an IBM PC-compatible system what interrupt
number is used for a floppy-disk interrupt? What interrupt type
will the CPU see for this interrupt? At what addresses will the

CPU find the interrupt vector for this interrupt?

Exercise: When the a key on the keyboard is pressed, which
input on the 8259 PIC will be asserted? What will the signal
level be? What value will the 80386 read from the PIC during the
interrupt acknowledge cycle?

Programming the 8259 Interrupt
Controller

The initialization of the PIC is rather complicated
becausét hasmary possibleoperatingmodes.The

PIC'’s operatingmodeis normally initialized by the
BIOS whenthe systemis booted.We will only con-
siderthe standardPIC operatingmodesusedon the
IBM PC andonly a systemwith a single (master)
PIC.

In it's standardnodethe PIC operatessfollows:

o if noISRfor thesameor ahigherlevel is active
theinterruptrequest{INTR) signalto the CPU
is asserted

if the CPU’sinterruptenableflag is setthenan
interruptacknavledgecycle will happenwhen
the currentinstructionterminates

during the interrupt acknavledge cycle the
highest-priority interrupt requestis captured
andsaved (“latched”) in the PIC’s interruptre-
guestregister(IRR) andthenthe interrupttype
for this interruptis readby the CPU from the
PIC. An interrupt acknavledge actually takes
two clock cycles.

The CPUusestheinterrupttypeto look up the
addres®f thelSR andrunsit

at the end of the ISR a commandbyte (20H)

must be written to the PIC register at address
20H to re-enablanterruptsat that level again.

Thisis calledthe'EOI' (end-ofinterrupt)com-

mand.

Duringnormaloperatioronly two operationseed
to beperformedonthePIC:

1. Disabling (masking) and enabling interrupts
from a particularsource.This is doneby read-
ing the interruptmaskregister (IMR) from lo-
cation21H, usingan AND or ORinstructionto
set/cleaparticularinterruptmaskbits.

Re-enablinginterrupts for a particular level
when the ISR for that level complete. This
is donewith the EOlI commandas described
above.

Masking/Enabling Interrupts

Therearethreeplaceswhereinterruptscan be dis-
abled:(1) thePICinterruptmask,(2) the PIC priority
logic, and(3) the CPU’s interruptenableflag.

Exercise: What is the difference between an interrupt “mask”
bit and an interrupt “enable” bit?

If the PIC interruptmaskbit is setthentheinter
rupt requestwill not be recognizedor latched). If
thePIC believesanISR for ahigherlevel interruptis
still executingdueto no EOI commancdhaving been
given for thatinterruptlevel it will not allow inter
ruptsof the sameor lower levels. If theinterrupten-
ablebit in the CPU’s flagsregisteris not setthenthe
interruptrequessignalfrom the PICwill beignored.

Notethatthe CPU'sinterruptenabldlagis cleared
whenaninterrupthappensandis restoredvhenthe
procesgeturnsfrom the ISR via the IRET instruc-
tion. This meanghatISRscant beinterrupted(not
evenby ahigherlevel interrupt)unlessnterruptsare
explicitly re-enabledn thelSR.

It's possibleto allow the CPUto interruptan ISR
(resultingin nested interrupts) by settingthe inter
ruptenablebit with the STl instruction.

Exercise: Can interrupts on an IBM-PC compatible computer
be nested (i.e. can an ISR be interrupted)? If so, under what

conditions?

Exercise: How many levels deep can interrupts be nested
on the IBM PC if the ISR does not re-enable interrupts? If it re-
enables interrupts but does not issue EOI to the PIC? If it does
both? In each of these cases how much space would be required
on the interrupted program’s stack to hold the values pushed dur-
ing the interrupt acknowledge cycle if 8 bytes are saved during

each interrupt?

Interrupt Latency

Oftena peripheraimustbe servicedwithin a certain
time limit after an event. For example,a character
mustbe readfrom an input port beforethe next on
arrives.

The interruptlatency is the maximumtime taken
to respondo aninterruptrequest.This will include
the time it takesfor the currentinstructionto com-
pleteplusthetime for the CPUto respondo thein-
terrupt(e.g. save the CS, EIP andflag registerson
thestack,acknavledgetheinterruptandfetchthein-
terruptvector). If an ISR is alreadyexecutingand
cannotbeinterruptedthenthis alsoincreaseshein-
terruptlateng.

Interruptroutinesshouldbe keptasshortaspossi-
ble to minimizetheinterruptlateng. Typically this

involves having the ISR storevaluesin a buffer or
setflagsandthenhaving the bulk of the processing
performedoutsidethe ISR. A typical “device driver”
consistsof an ISR that executesonly time-critical
functions such as reading/writingdata from/to the
peripherabhndanotheportionthatdealswith higher
level issuessuch as moving the disk drive head,
checkingfor errors,etc.

Edge- and Level-Triggered Inter-
rupts

Interruptrequessignalscanbe designedo be edge-
triggered(theinterruptactsasa clock andtherising
(or falling) edgeof theinterruptsignalcausesnin-
terruptto be recorded)or level-triggered(the inter-
ruptcontrollersamplegheinterruptsignalat certain
timesandrecordsaninterruptif theinputis asserted.

Exercise: The 8259 PIC is configured for edge-triggered in-
terrupts. Is it possible to share the interrupt request inputs by
wire-OR'ing several interrupt sources? Why or why not? What if
the inputs were active-low?

Sample 80386/8259 | SR

The codebelav shavs an80386assembljfanguage
programthatincludesan ISR. The programsetsup

anISR for interruptnumber8 (thetimerinterrupton

the IBM PC). The ISR simply decrements count.

Themainprogramwaitsuntil the countreachezero

andthenterminates.

Thetimerinterruptonthe IBM PCis drivenby a
clock thatgenerate®neinterruptevery 55 millisec-
onds.With theinitial countvalueprovidedbelow the
programwaitsfor 15 seconddeforeterminating.

Themainprogramsavesandrestoreghe previous
timerinterruptvector

Whenthe ISR begins executiononly the IP and
CSregisterswill have beeninitialized. Any other
segmentregistersthat will be usedin the ISR must

be explicitly loaded. In this casethe codeanddata .

areasarelocatedin the samesegmentso DS canbe
loadedfrom CS.

On entry to the ISR only the IP, CS and flags
registerswill have beensaved on the caller’s stack.
Any other registers used by the ISR must be saved

6

when starting the ISR and restored before return-
ing. Otherwisethe stateof theinterruptedcodewill
be changedby the ISR and this is likely to cause
seemingly-randorfailuresin otherprograms.

; exanpl e of programusing an ISR for
; IBMPC timer interrupt

isrvec equ 4*(8+0) ; location of vector for IR0

code segment public ; .COMfile setup
assume cs: code, ds: code

org 100h
start:
mv ax, 0 ; use ExtraSegment to access
mv es,ax ; vectors in segment 0

; save old interrupt vector

mv ax, es: [isrvec
mov prevoff, ax

mv ax, es: [isrvec+2]
nov prevseg, ax

; set up new vector

cli ; disable interrupts unti

; vector update is conplete

mv ax, of fset isr

mv es: [isrvec], ax

mv ax, cs

mv es: [isrvec+?], ax

sti ; re-enable interrupts
; wait until ISR decrenents count to zero
| oop: mov ax, count

cnp ax, 0

jnz | oop

; restore old interrupt vector

cli ; disable interrupts unti

; vector update is conplete

mov ax, prevof f ; restore prev
mv es:[isrvec],ax ; offset/segnent
mv ax, prevseg
mov es: [isrvec+2], ax
sti ; re-enable

; interrupts

; return to DOS
int 20h
; storage for demonstration program

273
?

count dw
prevoff dw

prevseg dw

; The ISR itself:

isr:

isrl:

t npax
t mpds

code

iret

dw

dw

ends
end

?

cs: t npax, ax ; save working registers
ax, ds

cs: tnpds, ax

ax,cs ; set up DS

ds, ax

ax, count

ax, 0 ; don't decrenent if already zero
isrl

ax, 1 ; decrenent count

count, ax

al,20h ; wite EO conmmand to 8259 PIC

20h,al ; to re-enable interrupts

ax, t npds ; restore working registers
ds, ax

ax, cs: t mpax

; return fromI SR and
; re-enable interrupts

-~

start

Exercise: Why must interrupts be disabled while updating the

interrupt vector?

Exercise:

How will the PC’s time of day change when this

program is run? What would happen if the interrupt were not

restored?

Exercise:
registers that will be changed in the ISR? Which stack? What
are the advantages and disadvantages of doing so?

Could a stack be used to save the values of the

