
ELEC 379 : MICROCOMPUTER SYSTEM DESIGN

1997/98 WINTER SESSION TERM 2

RTL Design
This lecture describes an approach to logic design called Register Transfer Level (RTL) design. This is the approach
used for the design of logic circuits ranging in complexity from digital clocks to microprocessors.
The steps involved include partitioning the data structures required by a device into the registers, selecting the op-
erations that need to be performed on the data in those registers, and planning the exact sequence in which those
operations are to be done.
After this lecture you should be able to:

classify a given piece of VHDL code as a behavioural, structural, or dataflow description

identify the registers and combinational logic functions required to implement a particular algorithm

partition the algorithm into a sequence of register transfers

write synthesizeable VHDL code to implement an RTL processor

Design Strategies

There are a number of strategies that are useful in
dealing with complex designs.

One strategy is to design at the highest (most ab-
stract) level possible with the tools available. For
example, using a behavioural design style with an
HDL instead of a structural style with schematics
will make it easier to write, read, document, debug
and transfer your design.

Another design strategy is to use hierarchical de-
composition. The device being designed should be
decomposed into a number of modules (VHDL en-
tities) that interface through well-defined interfaces
(VHDL ports). The internal structure of these mod-
ules should not be visible from outside the module.
Each of these modules should then be further subdi-
vided in other modules. The decomposition process
should be repeated until the remaining modules are
simple enough to be easily written and tested. This
decomposition makes it easier to test the modules,
allows modules to be re-used and allows more than
one person to work on the same project at the same
time.

It’s also a good idea to keep the design as portable
as possible. Avoid using language features that are
specific to a particular manufacturer or target tech-
nolgy unless they are necessary to meet other re-
quirements. This will make it possible to use dif-
ferent manufacturing processes and different devices
with a minimum of redesign.

Structural Design

Structural design is the oldest digital logic design
method. In this method the user does all the work.
The user selects the low-level components and de-
cides exactly how they are to be connected together.
The parity generator described in the previous lecture
is an example of structural design.

A structural design can be represented as a parts
list and a list of the connections between the pins on
the components (for example: “pin 12 on chip 3 is
connected to pin 5 on chip 7”). This representation
of a circuit is called a netlist.

Schematic capture is the most common structural
design method. The designer works with a program
similar to a drawing program that allows components
to be inserted into the design and connected to other
components.

Behavioural Design

At the other extreme, a behavioural design is meant
to demonstrate the function of a device without be-
ing concerned about the implementation. Thus a
behavioural design may include operations (such as
propagation delays) that cannot be synthesized at all
or that would be difficult to synthesize (such as inte-
ger division).

However, every design should start with a be-
havioural description. The behavioral description
can be simulated and used to verify that all of the

lec5.tex 1

required aspects of the design have been identified.
Often the output of a behavioural description can be
compared to the output of a structural or RTL de-
scription to check for errors.

As a simple example, consider a device that needs
to add four numbers. In VHDL we can simply write:

c <= a + b + c + d ;

This particular description is simple enough that
it can probably be synthesized. However, the result-
ing circuit will be a fairly large combinational circuit
including three adder circuits.

RTL Design

We can also compute the sum of the four values using
the following sequence of steps:

c <= 0 ;
c <= c + a ;
c <= c + b ;
c <= c + c ;
c <= c + d ;

where each signal assignment is executed sequen-
tially. Now we only need one adder circuit but the
process requires five steps and likely will take five
times as long. This approach is quite common and
the design method that has been developed to design
such circuits is called Register Transfer Level (RTL)
or “dataflow” design.

RTL design is well suited for the design of special-
purpose processors such as disk drive controllers,
video display cards, network adapter cards, etc.

The first step in an RTL design is to define the op-
eration of a device as an algorithm. This algorithm
is then broken down into (1) a set of registers and
combinational function blocks (e.g. adders) called
the datapath and (2) a state machine, called the con-
troller that controls the transfer of data through the
function blocks and between the registers.

Producing an RTL design is similar to writing a
computer program. Selecting the flow of data in
the datapath is similar to writing expressions involv-
ing the variables (registers) and operators (combina-
tional function blocks) in a conventional program-
ming language. Designing the controller state ma-
chine is similar to defining the flow of control within
the program (if/then/else, while-loops, etc).

When doing RTL design with VHDL the design
of the datapath (the instantiation of registers and the
design of multiplexers and combinational functions)
is done by the synthesizer. However, the designer
must design the state machine and decide on which
register transfers are performed in which clock cycle.

The diagram below shows a part of a typical datap-
ath. The type and number of registers, combinational
functions and multiplexers will be determined by the
application.

re
gi

st
erco

m
bi

na
tio

na
l

 fu

nc
tio

n

m
ul

tip
le

xe
r

fr
om

 r
eg

is
te

rs

to
 fu

nc
tio

n
bl

oc
ks

an
d

m
ul

tip
le

xe
rs

from controller

clock

As in any synchronous circuit, the registers in the
datapath and the registers in the state machine use the
same clock. Thus they will both change state at the
same time. The datapath registers therefore load the
values “computed” during one state at the end of that
state (which is also the start of the next state). To en-
sure proper operation the worst-case propagation de-
lay through the multiplexers and combinational func-
tion blocks must be less than the clock period minus
the register’s setup time.

state n state n+1

 clock edges
(change of state)

setup time
max. propagation
 delay

clock

RTL designs can trade datapath complexity (e.g.
using more adders and thus using more chip area)
against speed (e.g. having more adders means fewer
operations are required to obtain the result).

2

RTL Design Example

To show how an RTL design is described in VHDL
and to clarify the concepts involved, we will design a
four-input addder. This design will also demonstrate
how to create packages of components that can be
re-used.

The first design unit is a package that defines a
new type, num, for eight-bit unsigned numbers and
an enumerated type, states, with 6 possible values.
nums are defined as a subtype of the unsigned type.

-- RTL design of 4-input summer

-- subtype used in design

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

package averager_types is
subtype num is unsigned (7 downto 0) ;
type states is (clr, add_a, add_b, add_c,

add_d, hold) ;
end averager_types ;

The first entity defines the datapath. In this case
the four numbers to be added are available as inputs
to the entity and there is one output for the sum. The
datapath includes one register with synchronous load
and clear functions, an 8-bit adder and a multiplexer
that selects one of the four inputs as the value to be
added to the current value of the register.

The inputs to the datapath from the controller are
a 2-bit selector for the multiplexer and two control
signals to load or clear (set to 0) the register.

-- datapath

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;
use work.averager_types.all ;

entity datapath is
port (
a, b, c, d : in num ;
sum : out num ;
sel : in std_logic_vector (1 downto 0) ;
load, clear, clk : in std_logic
) ;

end datapath ;

architecture rtl of datapath is
signal mux_out, sum_out, reg_out : num ;

begin

-- multiplexer selects input to be added

mux_out <=
a when sel = "00" else
b when sel = "01" else
c when sel = "10" else
d ;

-- adder adds selected input and register
sum_out <= mux_out + reg_out ;

-- output is register output
sum <= reg_out ;

-- register with load and clear functions
process(d,load,clear,clk)
begin

if clk’event and clk = ’1’ then
if clear = ’1’ then

reg_out <= conv_unsigned(0,reg_out’length) ;
elsif load = ’1’ then

reg_out <= sum_out ;
end if ;

end if ;
end process ;

end rtl ;

The controller is a state machine. It’s outputs are
used to control the datapath and its inputs are used to
control the state machine’s state transitions. In this
case the only input is an update signal that tells our
device to re-compute the sum (presumably because
one or more of the inputs has changed).

This particular state machine sits at the “hold”
state until the update signal is true. It then sequences
through the other five states and the stops at the hold
state again. The other five states are used to clear the
register and to add the four inputs to the current value
of the register.

-- controller

library ieee ;
use ieee.std_logic_1164.all ;
use work.averager_types.all ;

entity controller is
port (
update : in std_logic ;
sel : out std_logic_vector (1 downto 0) ;
load, clear : out std_logic ;
clk : in std_logic
) ;

end controller ;

architecture rtl of controller is
signal s, ns : states ;
signal tmp : std_logic_vector (3 downto 0) ;

begin

-- state register
process(ns,clk)
begin

if clk’event and clk = ’1’ then

3

s <= ns ;
end if ;

end process ;

-- state sequencer
process(s,update)
begin

if update = ’1’ and s = hold then
ns <= clr ;

else
case s is

when clr => ns <= add_a ;
when add_a => ns <= add_b ;
when add_b => ns <= add_c ;
when add_c => ns <= add_d ;
when add_d => ns <= hold ;
when hold => ns <= hold ;

end case ;
end if ;

end process ;

-- controller outputs
with s select tmp <=

"0001" when clr,
"0010" when add_a,
"0110" when add_b,
"1010" when add_c,
"1110" when add_d,
"0000" when hold ;

sel <= tmp(3 downto 2) ;
load <= tmp(1) ;
clear <= tmp(0) ;

end rtl ;

The next piece of code is an example of how the
datapath and the controller entities can be placed in
a package, averager_components, as components.
This would not normally be worthwhile for such a
simple design.

-- package for datapath and controller

library ieee ;
use ieee.std_logic_1164.all ;
use work.averager_types.all ;

package averager_components is

component datapath
port (
a, b, c, d : in num ;
sum : out num ;
sel : in std_logic_vector (1 downto 0) ;
load, clear, clk : in std_logic
) ;

end component ;

component controller
port (
update : in std_logic ;
sel : out std_logic_vector (1 downto 0) ;
load, clear : out std_logic ;
clk : in std_logic

) ;
end component ;

end averager_components ;

The top-level averager entity instantiates the two
components and interconnects them. The two decla-
rations in the architecture starting with for are con-
figuration declarations. They specify which architec-
tures are to be used for each entity1

-- averager

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;
use work.averager_types.all ;
use work.averager_components.all ;

entity averager is port (
a, b, c, d : in num ;
sum : out num ;
update, clk : in std_logic) ;

end averager ;

architecture rtl of averager is
signal sel : std_logic_vector (1 downto 0) ;
signal load, clear : std_logic ;

for all : datapath use entity work.datapath (rtl) ;
for all : controller use entity work.controller (rtl) ;

begin
d1: datapath port map (a, b, c, d, sum, sel, load,

clear, clk) ;
c1: controller port map (update, sel, load,

clear, clk) ;
end rtl ;

1They should default to the most recently analyzed architec-
tures but Synopsys’ vhdlsim simulator does not seem to under-
stand this.

4

