
ELEC 379 : MICROCOMPUTER SYSTEM DESIGN

1997/98 WINTER SESSION TERM 2

VHDL for Complex Designs
This lecture introduces some aspects of VHDL that are useful when designing complex logic circuits.
After this lecture you should be able to:

make library packages visible

save entities as components in packages

instantiate components into an architecture

declare std logic, std logic vector, signed and unsigned signals

declare enumerated types and subtypes of array types and save them in a package

use conditional and selected signal assignments

instantiate tri-state outputs

Libraries, Packages and Components

When designing complex logic circuits it’s desirable
to decompose the design into simpler parts. Each of
these parts can be written and tested separately, per-
haps by different people. If the parts are sufficiently
general then it might also be possible to re-use them
in future projects.

Re-use in VHDL is done by saving these parts
(called “components”) in “packages”. A package
typically contains a set of components for a partic-
ular application. Packages are stored in “libraries”:

Library

component

component

Package

component

component

Package

To make the components in a package available
(“visible”) in another design, we use library state-
ments to specify the libraries to be searched and a
use statement for each package we wish to use. The
two most commonly used libraries are called IEEE
and WORK.

In the Synopsys VHDL implementation a library
is a directory and each package is a file in that direc-
tory. The package file is a database containing infor-
mation about the components in the package (inputs,
outputs, types, etc).

The WORK library is always available without hav-
ing to use a library statement. It is simply the WORK

subdirectory into which the current design is placed.
library and use statements must be used before

each entity that makes use of components found in
those packages. For example, if you wanted to use
the numeric_bit package in the ieee library you
would use:

library ieee ;
use ieee.numeric_bit.all ;

and if you wanted to use the dsp package in the WORK
library you would use:

use work.dsp.all ;

Exercise: Why is there no library statement in the second

example?

Creating Components

To create components we put component declara-
tions within a package declaration. When we “ana-
lyze” the file (with the read command in dc_shell)
the information about the components in the pack-
age are saved in a file with the package name in the
WORK library.

These components can then be used in other de-
signs by making them visible with a use statement.
A component declaration is similar to an entity dec-
laration and simply defines the input and output sig-
nals. Note that declaring a component does not cre-
ate any hardware – only when the component is used

lec4.tex 1

in an architecture is the hardware generated (“instan-
tiated”).

For example, the following code creates a pack-
age called flipflops containing only one compo-
nent called rs with inputs r and s and an output q
when it is analyzed:

package flipflops is
component rs

port (r, s : in bit ; q : out bit) ;
end component ;

end flipflops ;

Exercise: If you analyzed this code, what file would be cre-

ated? Where would it be?

Component Instantiation

Once a component has been placed in a package, it
can be used (“instantiated”) in an architecture. A
component instantiation simply describes how the
component is “hooked up” to the other signals in the
architecture. It is thus a concurrent statement like
the process statement rather than a sequential state-
ment. A component instantiation cannot be put in-
side a process.

The following example shows how 2-input
exclusive-or gates can be used to built a 4-input
parity-check circuit using component instantiation.
This type of description is called structural VHDL
because we are defining the structure rather than the
behaviour of the circuit.

-- xor gate

entity xor2 is
port (a, b : in bit ; x : out bit) ;

end xor2 ;

architecture rtl of xor2 is
begin

process(a,b)
begin

x <= a xor b ;
end process ;

end rtl ;

-- put xor2 component in a package

package xor_pkg is
component xor2

port (a, b : in bit ; x : out bit) ;
end component ;

end xor_pkg ;

-- parity function built from xor gates

use work.xor_pkg.all ;

entity parity is
port (a, b, c, d : in bit ; p : out bit) ;

end parity ;

architecture rtl of parity is
-- internal signals
signal x, y : bit ;

begin
x1: xor2 port map (a, b, x) ;
x2: xor2 port map (c, x, y) ;
x3: xor2 port map (d, y, p) ;

end rtl ;

The resulting top-level schematic for the parity en-
tity is:

Exercise: Label the connections within the parity generator

schematic with the signal names used in the architecture.

Type Declarations

It’s often useful to make up new types of signals for
a project. We can do this in VHDL by including
type declarations in packages. The two most com-
mon uses for defining new types are to declare arrays
of given dimensions (e.g. a bus of a given width) and
to declare types that can only have one of a set of
possible values (called enumeration types).

The following example shows how a package
called dsp_types that declares two new types is cre-
ated:

package dsp_types is
subtype sample is bit_vector (7 downto 0) ;
type mode is (slow, medium, fast) ;

end dsp_types ;

std logic Packages

In the IEEE library there are two packages that are
often used. These packages define alternatives to the
bit and bit_vector types for logic design.

The first package, std_logic_1164, de-
fines the types std_logic (similar to bit) and
std_logic_vector (similar to bit_vector). The
advantage of the std_logic types is that they can

2

have values other than ’0’ and ’1’. For example, an
std_logic signal can also have a high-impedance
value (’Z’). The std_logic_1164 package also
overloads the standard boolean operators so that
they also work with std_logic signals.

The second package is called std_logic_arith1

and defines the types signed and unsigned. These
are subtypes of std_logic_vector with over-
loaded operators that allow them to be used as
both vectors of logic values and as a binary val-
ues (in two’s complement or unsigned representa-
tions). Although the standard arithmetic operators
(+, -, *, /, **) can be applied to signals of type
signed or unsigned, it may not be practical or pos-
sible to synthesize complex operations such as mul-
tiplication, division or exponentiation.

For example, we could generate the combinational
logic to build a 4-bit adder using the following archi-
tecture:

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

entity adder4 is
port (
a, b : in unsigned (3 downto 0) ;
c : out unsigned (3 downto 0)) ;

end adder4 ;

architecture rtl of adder4 is
begin

c <= a + b ;
end rtl ;

The resulting (rather messy) schematic is:

1The IEEE standard is really numeric std but it’s not widely
available yet.

Concurrent Assignment

A complex architecture often has many processes
that only compute the value of a signal using an
if/else or a case statement. The selected and condi-
tional assignment statements are shorthand ways of
describing such processes in VHDL. The conditional
assignment is equivalent to a compound if/else state-
ment embedded within a process; the selected as-
signment is equivalent to a case statement embedded
within a process. These are concurrent statements.

For example, we can define an equivalence gate
and a 4-bit 3-input multiplexer using a process as
follows:

library ieee ;
use ieee.std_logic_1164.all ;

entity eqv is
port (a, b : in std_logic ; x : out std_logic) ;

end eqv ;

architecture rtl of eqv is
begin

process(a,b)
begin

if a = b then
x <= ’1’ ;

else
x <= ’0’ ;

end if ;
end process ;

end rtl ;

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

entity mux3 is
port (
a, b, c : in std_logic_vector (3 downto 0) ;
sel : in unsigned (1 downto 0) ;
x : out std_logic_vector (3 downto 0)) ;

end mux3 ;

architecture rtl of mux3 is
begin

process(a,b,c,sel)
begin

case sel is
when "00" => x <= a ;
when "01" => x <= b ;
when "10" => x <= c ;
when others => x <= a ;
end case ;

end process ;
end rtl ;

But we can write equivalent architectures as fol-
lows:

3

...

architecture rtl of eqv is
begin

x <= ’1’ when a = b else ’0’ ;
end rtl ;

...

architecture rtl of mux3 is
begin

with sel select x <=
a when "00" ,
b when "01" ,
c when "10" ,
a when others ;

end rtl ;

Tri-State Buses

A tri-state output can be set to the normal high and
low logic levels as well as to and a high-impedance
state. This type of output is often used in buses
where different devices must drive the bus at dif-
ferent times. One way to specify that an output
should be set to the high-impedance state is to use
an std_logic type and assign it a value of ’Z’.

The following example shows an implementation
of a 4-bit buffer with an enable output. When the
enable is not asserted the output is in high-impedance
mode :

library ieee ;
use ieee.std_logic_1164.all ;

entity tbuf is port (
d : in std_logic_vector (3 downto 0) ;
q : out std_logic_vector (3 downto 0) ;
en : in std_logic
) ;

end tbuf ;

architecture rtl of tbuf is
begin

process(d,en)
begin

if en = ’1’ then
q <= d ;

else
q <= "ZZZZ" ;

end if ;
end process ;

end rtl ;

The resulting schematic for the tbuf is:

4

