ELEC 379 : MICROCOMPUTER SYSTEM DESIGN
1997/98 WINTER SESSION TERM 2

VHDL for Complex Designs

This lecture introduces some aspects of VHDL that are useful when designing complex logic circuits.

After this lecture you should be able to:

o makelibrary packagesvisible

e save entities as componentsin packages

instantiate componentsinto an architecture

use conditional and selected signal assignments

¢ instantiatetri-state outputs
Libraries, Packagesand Components

When designing complex logic circuitsit's desirable
to decompose the design into simpler parts. Each of
these parts can be written and tested separately, per-
haps by different people. If the parts are sufficiently
general then it might also be possible to re-use them
in future projects.

Re-use in VHDL is done by saving these parts
(called “components’) in “packages’. A package
typically contains a set of components for a partic-
ular application. Packages are stored in “libraries’:

Library

Package Package

I component I I component I

| component | | component |

To make the components in a package available
(“visible”) in another design, weusel i brary state-
ments to specify the libraries to be searched and a
use statement for each package we wish to use. The
two most commonly used libraries are called | EEE
and WORK.

In the Synopsys VHDL implementation a library
isadirectory and each packageisafilein that direc-
tory. The package file is a database containing infor-
mation about the componentsin the package (inputs,
outputs, types, etc).

The WORK library is always avail able without hav-
ing to use alibrary statement. It is simply the WORK

lecd. tex

declare std_logic, std_logic_vector, signed and unsigned signals

declare enumerated types and subtypes of array types and save themin a package

subdirectory into which the current design is placed.

|'i brary and use statements must be used before
each entity that makes use of components found in
those packages. For example, if you wanted to use
the nuneric_bit package in the i eee library you
would use:

library ieee ;

use ieee.nuneric_bit.all ;
and if you wanted to usethe dsp package in the WORK
library you would use:

use work.dsp.all ;

Exercise: Why is there no library statement in the second

example?

Creating Components

To create components we put component declara
tions within apackage declaration. When we “ana-
lyze” thefile (with ther ead commandindc_shel |)
the information about the components in the pack-
age are saved in afile with the package name in the
WORK library.

These components can then be used in other de-
signs by making them visible with a use statement.
A component declaration is similar to an entity dec-
laration and simply defines the input and output sig-
nals. Note that declaring a component does not cre-
ate any hardware — only when the component is used

in an architectureisthe hardware generated (“instan-
tiated”).

For example, the following code creates a pack-
age called f|i pf | ops containing only one compo-
nent called rs with inputsr and s and an output ¢
when it is analyzed:

package flipflops is
component rs

port (r, s: inbit; gq: out bit) ;
end conponent ;
end flipflops ;
Exercise: If you analyzed this code, what file would be cre-

ated? Where would it be?

Component Instantiation

Once a component has been placed in a package, it
can be used (“instantiated”) in an architecture. A
component instantiation simply describes how the
component is “hooked up” to the other signalsin the
architecture. It is thus a concurrent statement like
thepr ocess statement rather than a sequential state-
ment. A component instantiation cannot be put in-
sideaprocess.

The following example shows how 2-input
exclusive-or gates can be used to built a 4-input
parity-check circuit using component instantiation.
This type of description is called structural VHDL
because we are defining the structure rather than the
behaviour of the circuit.

- Xor gate

entity xor2 is
port (‘a b: inbit; x:
end xor2 ;

out bit) ;

architecture rtl of xor2is
begin
process(a, b)
begin
X <= a xor b ;
end process ;
end rtl ;

- put xor2 component in a package

package xor_pkg is
conponent xor2
port (a b: inbit; x:
end conponent ;
end xor_pkg ;

out bit) ;

- parity function built from xor gates
use work. xor _pkg.all ;
entity parity is

port (a b, c, d:
end parity ;

inbit; p: out bit) ;

architecture rtl of parity is
- internal signals
signal x, y: bit
begin
x1: xor2 port nmap
X2: xor2 port nmap
x3: xor2 port map (
end rtl ;

—_—

a,
C,
d

=xu
T < x
-

Theresulting top-level schematic for theparity en-
tity is:

Exercise: Label the connections within the parity generator

schematic with the signal names used in the architecture.

Type Declar ations

It's often useful to make up new types of signals for
a project. We can do this in VHDL by including
type declarations in packages. The two most com-
mon uses for defining new types areto declare arrays
of givendimensions (e.g. abus of agiven width) and
to declare types that can only have one of a set of
possible values (called enumeration types).

The following example shows how a package
calleddsp_t ypes that declarestwo new typesiscre-
ated:

package dsp_types is
subtype sanple is bit_vector (7 downto 0) ;
type node is (slow, nedium fast) ;

end dsp_types ;

st d_l ogi ¢ Packages

In the | EEE library there are two packages that are
often used. These packages define alternativesto the
bit andbit _vect or typesfor logic design.

The first package, std_logic_1164, de
fines the types std_|l ogic (similar to bit) and
std_|l ogi c_vector (similar to bit_vector). The
advantage of the st d_I ogi ¢ types is that they can

have values other than 'O’ and ’1’. For example, an
std_| ogi ¢ signal can also have a high-impedance
value ("Z’). The std_|l ogic_1164 package aso
overloads the standard boolean operators so that
they also work with st d_| ogi ¢ signals.

The second packageiscaled std_| ogi c_arith
and defines the types si gned and unsi gned. These
are subtypes of std_|logic_vector with over-
loaded operators that allow them to be used as
both vectors of logic values and as a binary val-
ues (in two's complement or unsigned representa-
tions). Although the standard arithmetic operators
(+, -, *, [, **)canbeappliedto signals of type
si gned or unsi gned, it may not be practica or pos-
sible to synthesize complex operations such as mul-
tiplication, division or exponentiation.

For example, we could generate the combinational
logic to build a4-bit adder using the following archi-
tecture:

library ieee ;
use ieee.std_|logic_1164.all ;
use ieee.std_logic_arith.all ;

entity adderd is
port (
a, b: in unsigned (3 downto 0) ;
c : out unsigned (3 downto 0)) ;
end adder4 ;

architecture rtl of adder4 is
begin

c<=a+b;
end rtl ;

Theresulting (rather messy) schematic is:
)@—:ﬂ——t}:[am
m}:)fb&_v—)fb—‘_'
bI11)) et

alll))

al@1))
b1a1)

\\E
alz1)) - /D E
38 7
b[a:ﬂ]>>_m;)®>—r:)D—:ﬂ_
a[a::;i)—“r > br21
P S —
b121)) S atid
a03:8] _(“lm Q) bl11
H aos > n3p
br3:8) - o F——>> n37
e > n41
\i) brBl
> atd)
b13:8]
» al3:d]

1The |EEE standardisreally nuner i c_st d but it's not widely
available yet.

Concurrent Assignment

A complex architecture often has many processes
that only compute the value of a signal using an
if/else or a case statement. The selected and condi-
tional assignment statements are shorthand ways of
describing such processesin VHDL. The conditional
assignment is equivalent to a compound if/el se state-
ment embedded within a process; the selected as-
signment is equivalent to a case statement embedded
within a process. These are concurrent statements.

For example, we can define an equivaence gate
and a 4-bit 3-input multiplexer using a process as
follows:

library ieee ;
use ieee.std_|logic_1164.all ;

entity eqv is
port (a b: instd_logic; x:
end eqv ;

out std_logic) ;

architecture rtl of eqv is
begin
process(a, b)
begin
if a=>bthen
X <='1;
el se
X <='0 ;
end if ;
end process ;
end rtl ;

library ieee ;
use ieee.std_|logic_1164.all ;
use ieee.std_logic_arith.all ;

entity mux3 is
port (
a, b, ¢c: instd_logic_vector (3 downto 0) ;
sel : in unsigned (1 downto 0) ;
X : out std_logic_vector (3 downto 0)) ;
end nux3 ;

architecture rtl of nux3 is
begin
process(a, b, c, sel)
begin
case
when
when

sel is

"00" =>x <=a;

"01" => x <= b ;
when "10" => x <= ¢ ;
when others => x <= a ;
end case ;

end process ;
end rtl ;

But we can write equivalent architectures as fol-
lows:

architecture rtl of eqv is
begin

X <='1" when a = b else’'0 ;
end rtl ;

architecture rtl of nux3 is
begin
with sel select x <=
a when "00"
b when "01"
¢ when "10"
a when others ;
end rtl ;

Tri-State Buses

A tri-state output can be set to the normal high and
low logic levels as well as to and a high-impedance
state. This type of output is often used in buses
where different devices must drive the bus at dif-
ferent times. One way to specify that an output
should be set to the high-impedance state is to use
anstd_| ogi c typeand assignit avalueof 'Z’.

The following example shows an implementation
of a 4-bit buffer with an enable output. When the
enableis not asserted the output isin high-impedance
mode:

library ieee ;
use ieee.std_|logic_1164.all ;

entity tbuf is port (
d: instd_logic_vector (3 downto 0) ;
q : out std_logic_vector (3 downto 0) ;
en : in std_logic
)

end thuf ;

architecture rtl of thuf is
begin
process(d, en)
begin
if en ='1 then
q<=4d;
el se
q <= "Z7777" ;
end if ;
end process ;
end rtl ;

Theresulting schematic for thet buf is:

YA

v

YA

.

YA

d121

d13: 21>

YA

;

BTSS

BTSS

L qca)
BTSS

L qtz1

BTSS
qca1

ql3:8]

