
ELEC 379 : MICROCOMPUTER SYSTEM DESIGN

1997/98 WINTER SESSION TERM 2

Sequential Logic Design
This lecture reviews the design of sequential logic and shows how state machines can be described in VHDL.
After this lecture you should be able to: (1) design a state machine from an informal description of its operation, and
(2) write a VHDL description of the state machine.

Sequential Logic and State Machines

Sequential logic circuits have memory. Their outputs
are a function of their state as well as their current
inputs. The state of a sequential circuit is defined
as the contents of all of the memory devices in the
circuit.

In theory, any sequential logic circuit can be de-
scribed as a state machine (also called a “finite” state
machine or FSM). There are two types of state ma-
chines. In the Moore state machine the output is a
function only of the current state:

output

co
m

bi
na

tio
na

l

 lo

gi
c

memory
input

co
m

bi
na

tio
na

l

 lo

gi
c

In the Mealy state machine the output is a function
of the current state and the current inputs:

output

co
m

bi
na

tio
na

l

 lo

gi
c

memory
input

co
m

bi
na

tio
na

l

 lo

gi
c

Exercise: Which signal in the above diagrams indicates the

current state?

However, large sequential circuits such as micro-
processors have too much state to be easily described
as a single state machine. A common approach is to
split up the design into storage registers and a state
machine that controls transfers between the registers.
This is known as Register Transfer Level design. In
this lecture we will study the design of simple FSMs.

Common Sequential Logic Circuits

A flip-flop is the simplest sequential logic circuit.
It’s purpose is to store one bit of state. There are

many types of flip-flops but by far the most com-
mon is the D (delay) flip-flop. The rising edge of
a clock stores the value of the input (typically called
“D” and makes it available on the output (typically
“Q”). Thus the D flip-flop has a next-state input (D),
a state output (Q) and a clock input. The D flip-flop
state changes only on the clock edge. Usually all of
the flip-flops in a circuit will have the same signal
applied to their clock inputs. This synchronous op-
eration guarantees that their states will change at the
same time.

A latch1 or register is several D flip-flops with
their clocks tied together so that all the flip-flops are
loaded simultaneously.

Exercise: What would be another name for a 1-bit register?

A shift register is a circuit of several flip-flops
where the output of each flip-flop is connected to the
input of the adjacent flip-flop:

D Q D Q D Q

clock

serial
input

serial
output

On each clock pulse the state of each flip-flop is
transfered to the next flip-flop. This allows the data
shifted in at one “end” of the register to appear at
the other end after a delay equal to the number of
stages in the shift register. The flip-flops of a shift
registers can often be accessed directly and this type
of shift register can be used for converting between
serial and parallel bit streams.

Exercise: Add the parallel outputs on the above diagram.

A counter is a circuit with an N-bit output whose
value increases by 1 with each clock. A synchronous
counter is a conventional state machine and uses

1Strictly speaking a latch is a register that whose output fol-
lows the input (is transparent) when the clock is low.

lec3.tex 1

combinational circuit (an adder) to select the next
count based on the current count value. A ripple
counter is a simpler circuit in which the the Q out-
put of one flip-flop drives the clock input of the
next counter stage. This is an example of a non-
synchronous design because the flip-flops have dif-
ferent clocks.

Design of State Machines

The first step in the design of a state machine is to
specify the the inputs, the states, the outputs, and the
conditions required to change states.

We must choose enough memory elements (typi-
cally flip-flops) to represent all the possible states. n
flip-flops can be used to represent up to 2n states (e.g.
3 flip-flops can encode up to 8 states). In some cases
we can simplify the design of the state machine by
using more than the minimum number of flip-flops.

Exercise: If we used 8-bits of state information, how many

states could be represented? What if we used 8 bits of state but

added the condition that exactly one bit had to be set at any given

time (a so-called “one-hot encoding”)?

As with combinational logic, the simplest descrip-
tion of a sequential circuit is as a table with one line
for each possible combination of state and inputs.
After the inputs and the number of state variables
has been determined, the next step is to exhaustively
enumerate all the possible combinations of state and
input. Then, based on the design’s requirements, we
determine the required output and next state for each
line.

The final step is to design the block of combina-
tional logic that determines the next state and the
output. This combinational circuit has two sets of
inputs: the outputs of the flip-flops (representing the
current state) and the input to the sequential circuit.
The circuit also has two sets of outputs: one is con-
nected to the inputs of the flip-flops (the next state)
and other to the output of the sequential circuit. The
designs of these combinational circuits proceeds as
described in the section on combination circuits.

We also need to apply a clock signal to the clock
inputs of the flip-flops. The sequential circuit will
change state on every rising edge of this clock sig-
nal. Practical circuits will also require some means

to initialize (reset) the circuit when power is first ap-
plied.

Example: Synchronous 2-bit Counter

A two-bit counter will have four states. Two flip-
flops are sufficient to implement four states. In this
case there are no inputs, the circuit merely counts up
at each clock signal. The transition conditions are
simply to unconditionally go from one state (count)
to the next state (next higher count).

If we use the variables Q0 and Q1 to represent the
state of the system, and Q0’ and Q1’ as the subse-
quent state, the tabular representation would be as
follows:

Q1 Q0 Q1’ Q0’
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

This example is particularly simple since there are
no inputs and the outputs are the same as the values
of the state variables. The combinational circuit only
needs to determine the next state based on the current
state. We can obtain the following sum-of-products
expressions for these equations:

Q1’ = Q1Q0 + Q1Q0
Q0’ = Q1Q0 + Q1Q0

Exercise: Write the tabular description of a counter with an

up/down input that controls the count direction.

Sequential Circuits in VHDL

We have seen that if an output signal is always as-
signed a new value each time the process “executes”
then the output is only a function of the inputs, no
memory is required, and a combinational circuit will
be synthesized. However, if in some cases an out-
put signal would not be assigned a new value then it
needs to retain its previous value, memory is required
to ensure proper operation, and a sequential logic cir-
cuit will be synthesized. This is how sequential cir-
cuits are synthesized from VHDL descriptions.

For example, we can describe a D flip-flop in
VHDL as follows:

2

entity D_FF is
port (clk, d : in bit ;
q : out bit) ;

end D_FF ;

architecture rtl of D_FF is
begin
process(clk)
begin

if clk’event and clk = ’1’ then
q <= d ;

end if ;
end process ;
end rtl ;

The expression clk’event (pronounced “clock
tick event”) is true when the value of clk has
changed since the last time the process was executed.
In this case the output q is only assigned a value if
clk changes and the new value is 1. When clk = 0
the output retains its previous value. It’s necessary
to check for clk=1 to distinguish between rising and
falling edges of the clock.

One way of representing a FSM in VHDL is to use
two processes. One process implements the combi-
national logic and computes the output and next state
based on the current state and inputs. The second
process is sensitive to the clock and sets the current
state equal to the value for the next state as computed
by the first process.

This corresponds to the following block diagram:
input output

next
state

current
 state

combinational
 logic

register

clock

For example, a VHDL description for a 2-bit
counter could be written as follows:

entity count2 is
port (clk : in bit ; count :

out bit_vector (1 downto 0)) ;
end count2 ;

architecture rtl of count2 is
signal current, nexts :

bit_vector (1 downto 0) ;
begin

-- combinational logic:
process(current)
begin
-- compute next state and output
-- from current state and input
case current is

when "00" =>
nexts <= "01" ;
count <= "00" ;

when "01" =>
nexts <= "10" ;
count <= "01" ;

when "10" =>
nexts <= "11" ;
count <= "10" ;

when "11" =>
nexts <= "00" ;
count <= "11" ;

end case ;
end process ;

-- sequential logic
process(clk)
begin

if clk’event and clk = ’1’ then
current <= nexts ;

end if ;
end process ;

end rtl ;

Exercise: Modify the above description to add an up/down

control input.

The synthesized circuit is:

Exercise: Identify the components in the schematic that were

created (“instantiated ”) by each process.

Signal Assignment in Processes

Should you be tempted to assign a value to a signal
more than once in a process you should note that sig-
nal assignments do not take effect until the end of the
process2. Consider the case where the following two

2If you want to make use of variables with conventional be-
haviour within a process you need to use VHDL variables (to
be described later)

3

statements appear in a process:

z <= ’1’ ;
z <= not z ;

Exercise: What is the value of z? 1? 0? something else?

Simulation of VHDL Descriptions

Although it’s possible to check the simple de-
signs we’ve built so far by looking at the result-
ing schematic, this is difficult for complex circuits.
Therefore we normally simulate the behaviour of
VHDL descriptions before implementing them in or-
der to make sure the resulting circuit will behave cor-
rectly.

To test behaviour through simulation we write a
VHDL entity called a test bench whose purpose is to
exercise a design. The test bench applies sequences
of known values to the inputs of the entity being
tested and checks the entity’s outputs to ensure the
design behaves as expected. The input/output test
signals are known as test vectors.

In this course you will be supplied with test
benches for each assignment requiring simulation.

4

