
ELEC 379 : MICROCOMPUTER SYSTEM DESIGN

1997/98 WINTER SESSION TERM 2

Combinational Logic Design
This lecture reviews the design of combination logic and introduces the use of VHDL for logic design.
After this lecture you should be able to convert a text description of a combinational logic circuit into three forms: (1)
a truth table, (2) a sum of products boolean equation, and (3) a VHDL entity/architecture description.

Logical Variables and Boolean Alge-
bra

A logic variable can take on one of two values, typ-
ically called true and false (T and F). With positive-
true logic true values are represented by a high (H)
voltage. With negative-true logic true values are rep-
resented by a low (L) voltage. Variables using neg-
ative logic are usually denoted by placing a bar over
the name (B), or an asterisk after the variable name
(B ).

Warning: We will use or 1 and 0 to represent truth
values rather than voltage levels. However, some au-
thors use 1 and 0 to represent voltage levels instead.
This can be very confusing. Also note that an overbar
is sometimes used to indicate a logical complement
operation rather than a negative-true signal.

Combinational Logic

A combinational logic circuit is one where the output
is a function of the current input only. A combina-
tional logic circuit can be represented as:

a truth table that shows the output values for
each possible combination of input values,

a boolean equation that defines the value of
each output variable as a function of the input
variables, or

a schematic that shows a connection of hard-
ware logic gates (and possibly other devices)
that implement the circuit.

Truth Tables

For example, the truth table for a circuit with an out-
put that shows if its three inputs have an even number
of 1’s (even parity) would be:

a b c p
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Sum of Products Form

From the truth table we can obtain an expression for
each output as a function of the input variables.

The simplest method is to write a sum of prod-
ucts expression. Each term in the sum corresponds
to one line of the truth table for which the desired
output variable is true (1). The term is the product
of the each input variable (if that variable is 1) or its
complement (if that variable is 0). Each such term is
called a minterm and such an equation is said to be
in canonical form.

For example, the variable p above takes on a value
of 1 in four lines (the first, fourth, sixth and seventh
lines) so there would be four terms. The first term
corresponds to the case where the input variables are
a 0, b 0 and c 0. So the term is abc. Note
that this product will only be true when a, b and c
have the desired values, that is, only for the specific
combination of inputs on the third line.

If we form similar terms for the other lines where
the desired output variable takes on the value one and
then sum all these terms we will have an expression
that will evaluate to one only when required and will
evaluate to zero in all other cases.

Exercise: Write out the sum-of-products equation for p. Eval-

uate the expression for the first two lines in the table.

lec2.tex 1



Common Combinational Logic Circuits

In addition to the standard logic functions (NAND,
OR, etc) some combinational logic functions are
widely used and are often available as SSI ICs and
as library blocks for ASIC design:

a decoder is a circuit with N inputs and 2N

outputs. The output selected by the input bits
(treated as a binary number) is set true and the
other outputs are false. This circuit is often used
for address decoding.

a priority encoder does the inverse operation.
The N output bits represent the number of the
(highest numbered) input line.

a multiplexer copies the value of one of 2N in-
puts to a single output. The input is selected by
an N-bit input.

a demultiplexer does the inverse operation and
copies one input to one of 2N outputs.

adders, comparators and ALUs (arithmetic
logic units) implement the basic arithmetic and
logic functions

drivers and buffers provide high current, tri-
state or open collector (OC) outputs

Exercise: Write out the truth table and the canonical sum-of-

products expression for a 2-to-1 multiplexer.

Example: 7-segment display driver

LED numeric displays typically use seven segments
labeled ‘a’ through ‘g’ to display a digit between 0
to 9:

a

b

c
d

e

f
g

This example shows the design of a circuit that
converts a 2-bit number into seven outputs that turn
the segments on and off to show numbers between 0
and 3. We use the variables A and B for the two input
bits and a to g for the seven outputs. We can build up
a truth table for this function as follows:

B A a b c d e f g
0 0 1 1 1 1 1 1 0
0 1 0 1 1 0 0 0 0
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 0 0 1

From the truth table we can then write out the sum
of products expressions for each of the outputs:

a = AB + AB + AB
b = 1
c = AB + AB + AB
d = AB + AB + AB
e = AB + AB
f = AB
g = AB + AB

Exercise: Draw a schematic of a circuit that implements the

above logic function.

Combinational Logic Design with
VHDL

VHDL is a Very-complex1 Hardware Description
Language that we will use to design logic circuits.

Example 1 - Introduction

Let’s start with a simple example – a type of circuit
called example1 that has one output signal (c) that is
the AND of two input signals (a and b). The file
example1.vhd contains the following VHDL de-
scription:

-- example 1: An AND gate

entity example1 is port (
a, b: in bit ;
c: out bit ) ;

end example1 ;

architecture rtl of example1 is
begin

process(a,b)
begin

c <= a and b ;
end process ;

end rtl ;

First some observations on VHDL syntax:

1Actually, the V stands for VHSIC. VHSIC stands for Very
High Speed IC.

2



VHDL is case-insensitive. There are many cap-
italization styles. I prefer all lower-case. You
may use whichever style you wish as long as
you are consistent.

Everything following two dashes “--” on a line
is a comment and is ignored.

Statements can be split across any number of
lines. A semicolon ends each statement. In-
dentation styles vary but an “end” should be in-
dented the same as its corresponding “begin”

Entity and signal names begin with a letter fol-
lowed by letters, digits or underscore (“ ”) char-
acters.

A VHDL description has two parts: an entity part
and an architecture part. The entity part defines the
input and output signals for the device or “entity”
being designed while the architecture part describes
the behaviour of the entity.

Each architecture is made up of one or more pro-
cesses, all of which “execute2” at the same time (con-
currently). Within each process, statements are exe-
cuted one after the other (sequentially).

The (a,b) after process is called the “sensitiv-
ity list” and should include all the signals that might
affect the value(s) computed in the process.

The single statement in this example’s single pro-
cess is a signal assignment that assigns the value of
an expression to the output signal c. Expressions in-
volving signals of type bit can use the logical opera-
tors and, nand, or, nor, xor, xnor, and not. Paren-
theses can be used to force evaluation in a certain
order.

To ensure that we’ll end up with a simple combi-
national circuit each output signal should be assigned
a value exactly once in the architecture.

From this VHDL description a program called a
logic synthesizer can design a circuit that has the re-
quired functionality. In this case it’s not too surpris-
ing that the result is the following circuit:

2The resulting hardware doesn’t actually “execute” but this
point of view is useful when using VHDL for simulation.

Example 2 - if/then/else

Within a process we can use other programming lan-
guage constructs such as if/then/else and case
statements.

The next example uses an if/then/else state-
ment in a process:

-- example 2: XOR using if/then/else

entity example2 is port (
x1, x2: in bit ;
y: out bit ) ;

end example2 ;

architecture rtl of example2 is
begin

process(x1,x2)
begin

if x1 /= x2
then

y <= ’1’ ;
else

y <= ’0’ ;
end if ;

end process ;
end rtl ;

which synthesizes to the following:

Relational operators that can be used in expres-
sions include = (equal), /= (not equal), >, <, >=,
and <=. The result of relational operators is of type
boolean.

The logical operators (e.g. and) can also be ap-
plied to values of type boolean. However, note that
in general there is no automatic type conversion in
VHDL. For example, boolean values cannot be as-
signed to bit values and integers cannot be assigned
to bit vectors.

Exercise: What schematic would you expect if the /= were

replaced with = ?

Example 3 - Vectors

VHDL also allows signals of type bit_vector
which are one-dimensional arrays of bits. The next
example is a VHDL description of the 7-segment
LED driver and demonstrates the case statement and
bit vectors.

-- example 3: 7-segment LED driver for
-- 2-bit input values

3



entity example3 is port (
n: in bit_vector (1 downto 0) ;
seg: out bit_vector (6 downto 0) ) ;

end example3 ;

architecture rtl of example3 is
begin

process(n)
begin

case n is
when "00" => seg <= "1111111" ;
when "01" => seg <= "0110000" ;
when "10" => seg <= "1101101" ;
when "11" => seg <= "1111001" ;

end case ;
end process ;

end rtl ;

which synthesizes to:

The indices of bit vectors can be declared to
have increasing (to) or decreasing (downto) values.
bit_vector constants are formed by enclosing an
ordered sequence of bit values in double quotes.

Exercise: If x is declared as bit vector (0 to 3) and in a

process the assignment x<="0011" is made, what is the value of

x(3)? What if x had been declared as bit vector (3 downto

0)?

Substrings of vectors can be extracted by specify-
ing a range in the index expression and vectors can
be concatenated using the & operator. For example
x <= x(6 downto 0) & ’0’ would shift the 8-

bit value x left by 1 bit.
The logical operators (e.g. and) can be applied to

bit vectors and operate on a bit-by-bit basis. The =
and /= operators can also be used and evaluate to true
only if all elements are the same.

Exercise: Write a VHDL entity and architecture for the 2-

to-1 multiplexer designed in the previous exercise. Use a case

statement.

Exercise: Re-write example 3 so that the architecture uses

only signal assignments.

4


