ELEC 379 : MICROCOMPUTER SYSTEM DESIGN
1997/98 WINTER SESSION TERM 2

Combinational Logic Design

This lecture reviews the design of combination logic and introduces the use of VHDL for logic design.
After this lecture you should be ableto convert a text description of a combinational logic circuit into three forms: (1)
atruth table, (2) a sum of products boolean equation, and (3) a VHDL entity/architecture description.

Logical Variablesand Boolean Alge-
bra

A logic variable can take on one of two values, typ-
icaly called true and false (T and F). With positive-
true logic true values are represented by a high (H)
voltage. With negative-truelogic true values are rep-
resented by alow (L) voltage. Variables using neg-
ative logic are usually denoted by placing a bar over
the name (B), or an asterisk after the variable name
(BY).

Warning: Wewill useor 1 and Oto represent truth
values rather than voltage levels. However, some au-
thors use 1 and O to represent voltage levels instead.
Thiscan bevery confusing. Also notethat an overbar
is sometimes used to indicate a logica complement
operation rather than a negative-true signal.

Combinational Logic

A combinational logic circuit is one where the output
is a function of the current input only. A combina-
tional logic circuit can be represented as:

e a truth table that shows the output values for
each possible combination of input values,

e a boolean eguation that defines the value of
each output variable as a function of the input
variables, or

e a schematic that shows a connection of hard-
ware logic gates (and possibly other devices)
that implement the circuit.

Truth Tables

For example, the truth table for acircuit with an out-
put that showsif itsthreeinputs have an even number
of 1's (even parity) would be:

lec2. tex

a b c|p
0 0 01
0 0 1|0
0 1 0|0
0 1 1)1
1 0 0|0
1 0 11
1 1 01
1 1 1|0

Sum of Products Form

From the truth table we can abtain an expression for
each output as a function of the input variables.

The simplest method is to write a sum of prod-
ucts expression. Each term in the sum corresponds
to one line of the truth table for which the desired
output variable is true (1). The term is the product
of the each input variable (if that variableis 1) or its
complement (if that variableis0). Each such termis
called a minterm and such an equation is said to be
in canonical form.

For example, the variable p above takeson avalue
of 1in four lines (the first, fourth, sixth and seventh
lines) so there would be four terms. The first term
correspondsto the case where the input variables are
a=0,b=0and c=0. Sothetermisabc. Note
that this product will only be true when a, b and ¢
have the desired values, that is, only for the specific
combination of inputs on the third line.

If we form similar terms for the other lines where
the desired output variabletakes on the value one and
then sum al these terms we will have an expression
that will evaluate to one only when required and will
evaluateto zero in al other cases.

Exercise: Write out the sum-of-products equation for p. Eval-

uate the expression for the first two lines in the table.

Common Combinational Logic Circuits

In addition to the standard logic functions (NAND,
OR, etc) some combinational logic functions are
widely used and are often available as SSI 1Cs and
aslibrary blocksfor ASIC design:

e a decoder is a circuit with N inputs and 2N
outputs. The output selected by the input bits
(treated as a binary number) is set true and the
other outputsarefalse. Thiscircuit is often used
for address decoding.

e a priority encoder does the inverse operation.
The N output bits represent the number of the
(highest numbered) input line.

e amultiplexer copies the value of one of 2\ in-
putsto asingle output. Theinput is selected by
an N-bit input.

e ademultiplexer does the inverse operation and
copies one input to one of 2N outputs.

e adders, comparators and ALUs (arithmetic
logic units) implement the basic arithmetic and
logic functions

e drivers and buffers provide high current, tri-
state or open collector (OC) outputs

Exercise: Write out the truth table and the canonical sum-of-

products expression for a 2-to-1 multiplexer.

Example: 7-segment display driver

LED numeric displays typically use seven segments -

labeled ‘a through ‘g’ to display a digit between O
to9:

a

d

This example shows the design of a circuit that
converts a 2-bit number into seven outputs that turn
the segments on and off to show numbers between 0
and 3. We usethevariables A and B for the two input
bitsand ato g for the seven outputs. We can build up
atruth tablefor this function as follows:

= R=lv]
R Or oYX
PR O R
PR PR RT
R OPRFR R0
P R OPRrRa
Or OoORro
O OO R -
= = O O

From the truth table we can then write out the sum
of products expressions for each of the outputs:

a = AB+AB+AB

b =1

c = AB+AB+AB

d = AB+AB+AB

e = AB+AB

f = AB

g = AB+AB

Exercise: Draw a schematic of a circuit that implements the

above logic function.

Combinational Logic Design with
VHDL

VHDL is a Very-complex! Hardware Description
Language that we will use to design logic circuits.

Example 1 - Introduction

Let’'s start with a smple example — a type of circuit
called examplel that has one output signal (c) that is
the AND of two input signals (a and b). The file
exanpl el. vhd contains the following VHDL de-
scription:

example 1: An AND gate

entity exanplel is port (
a, b:inbit ;
c: out bhit) ;

end exanplel ;

architecture rtl of examplel is
begin
process(a, b)
begin
c<=aandb;
end process ;
end rtl ;

First some observationson VHDL syntax:

IActually, the V stands for VHSIC. VHSIC stands for Very
High Speed IC.

e VHDL iscase-insensitive. There are many cap-
italization styles. | prefer al lower-case. You
may use whichever style you wish as long as
you are consistent.

e Everything following two dashes“--” onaline
isacomment and isignored.

e Statements can be split across any number of
lines. A semicolon ends each statement. In-
dentation styles vary but an “end” should bein-
dented the same as its corresponding “ begin”

e Entity and signal names begin with a letter fol-
lowed by letters, digits or underscore (“_") char-
acters.

A VHDL description has two parts: an entity part
and an architecture part. The entity part defines the
input and output signals for the device or “entity”
being designed while the architecture part describes
the behaviour of the entity.

Each architecture is made up of one or more pro-
cesses, all of which “execute?” at the sametime (con-
currently). Within each process, statements are exe-
cuted one after the other (sequentially).

The (a, b) after process is called the “ sensitiv-
ity list” and should include al the signals that might
affect the value(s) computed in the process.

The single statement in this example's single pro-
cess is asignal assignment that assigns the value of
an expression to the output signal ¢. Expressionsin-
volving signals of type bit can use the logical opera-
torsand, nand, or, nor, xor, xnor, and not . Paren-
theses can be used to force evaluation in a certain
order.

To ensure that we'll end up with a simple combi-
national circuit each output signal should be assigned
avalue exactly once in the architecture.

From this VHDL description a program called a
logic synthesizer can design a circuit that has the re-
quired functionality. In this case it’s not too surpris-
ing that the result is the following circuit:

>
o>

ANZ

2The resulting hardware doesn’t actually “execute” but this
point of view isuseful when using VHDL for simulation.

Example 2 - if/then/else

Within a process we can use other programming lan-
guage constructs such asif/then/ el se and case
statements.

The next example uses an i f/then/ el se state-
ment in a process:

- exanple 2: XOR using if/then/else

entity exanple2 is port (
x1, x2: in bit ;
y: out bit) ;
end exanpl e2

architecture rtl of example2 is

begin
process(x1, x2)
begin
if x1/=x2
t hen
y<='r
el se
y <='0
end if ;
end process
end rtl ;

which synthesizes to the following:

x1[>

Relational operators that can be used in expres-
sions include = (equal), /= (not equal), >, <, >=,
and <=. The result of relational operators is of type
boolean.

The logical operators (e.g. and) can also be ap-
plied to values of type boolean. However, note that
in genera there is no automatic type conversion in
VHDL. For example, boolean values cannot be as-
signed to bit values and integers cannot be assigned
to bit_vectors.

Exercise: What schematic would you expect if the / = were

replaced with = ?

Example 3 - Vectors

VHDL aso alows signals of type bit_vector
which are one-dimensional arrays of bits. The next
example is a VHDL description of the 7-segment
LED driver and demonstratesthe case statement and
bit vectors.

- exanple 3: 7-segnent LED driver for
2-bit input val ues

Exercise: Re-write example 3 so that the architecture uses
entity exanple3 is port (
n: in bit_vector (1 downto 0) ;
seg: out bit_vector (6 downto 0)) ;
end exanpl e3 ;

only signal assignments.

architecture rtl of exanpled is

begin
process(n)
begin
case nis
when "00" => seg <= "1111111" ;
when "01" => seg <= "0110000" ;
when "10" => seg <= "1101101" ;
when "11" => seg <= "1111001"
end case ;
end process ;
end rtl ;

which synthesizes to:

SE(Q[@]: > seql6:0]

NR
ni@l segl4f
|
m[1=B]| > —> VA
segl2]

The indices of bit_vectors can be declared to
have increasing (t 0) or decreasing (downt 0) values.
bit_vector constants are formed by enclosing an
ordered sequence of bit valuesin double quotes.

Exercise: Ifx is declared asbit _vector (0 to 3) andina
process the assignment x<="0011" is made, what is the value of
X(3) ? What if x had been declared as bi t vector (3 downto
0)?

Substrings of vectors can be extracted by specify-
ing arange in the index expression and vectors can
be concatenated using the & operator. For example

X <= x(6 downto 0) & '0" would shift the 8-
bit value x left by 1 bit.

The logical operators (e.g. and) can be applied to
bit vectors and operate on a bit-by-bit basis. The =
and/ = operators can also be used and evaluateto true
only if all elements are the same.

Exercise: Write a VHDL entity and architecture for the 2-
to-1 multiplexer designed in the previous exercise. Use a case
statement.

