
ELEC 379 : MICROCOMPUTER SYSTEM DESIGN

1997/98 WINTER SESSION TERM 2

Direct Memory Access (DMA)
Direct Memory Access is a method of transferring data between peripherals and memory without using the CPU.
After this lecture you should be able to: identify the advantages and disadvantages of using DMA and programmed
I/O, select the most appropriate method for a particular application, and describe the sequence of events that takes
place during a DMA transfer on the IBM PC.

Programmed I/O

Programmed I/O (PIO) refers to using input and out-
put (or move) instructions to transfer data between
memory and the registers on a peripheral interface.

The advantage of PIO is that it is simple to imple-
ment. In many cases the CPU will be fast enough to
transfer data as fast as the peripherals (e.g. a hard
disks) can supply or accept it. Often the only addi-
tional hardware required is a circuit to request CPU
wait states in order to slow down or synchronize the
CPU.

The disadvantage of PIO is that the CPU is tied
up for the duration of the transfer while doing a rela-
tively simple task.

Direct Memory Access (DMA)

In some cases the CPU may not be fast enough to
keep up with the peripheral or it may be desirable to
allow the CPU to do other useful work while the I/O
is in progress.

In this case a special-purpose processor called a
DMA controller (DMAC) can be used to transfer
data between memory and I/O devices. The DMA
controller periodically takes over control of the sys-
tem bus from the CPU, and, like the CPU, generates
address, data and control signals to transfer data be-
tween memory and I/O devices.

The DMA controller is a special-purpose device
designed explicitly for this data transfer function. It
can perform all the operations required for data trans-
fer (increment the memory address, decrement the
count, input, write, and test for operation complete)
in one bus cycle. This speeds up the transfer of data
and reduces the number of bus cycles required to
transfer a given amount of data.

DMA controllers can be set up to take over the
bus for each byte of data to be transferred and then

return control to the CPU (“cycle stealing”) or they
can operate in burst mode in which a block of data is
transferred before returning bus control to the CPU.

DMA controllers can transfer data in a two-step
process by reading a value from one port or address
in one bus cycle and writing that value to another port
or address in a second bus cycle. It is also possible
for the DMA controller to carry out read and write
operations simultaneously. In this case the data is
transferred directly between the I/O device and mem-
ory in the same bus cycle. This is the mode of oper-
ation used in the IBM PC.

DMA versus PIO

It makes sense to use DMA when it is necessary to
transfer data faster than the CPU can keep up with
it or when it is desirable to reduce the CPU or bus
bandwidth overhead used by I/O operations. The
main disadvantages of DMA are the additional cost
of the hardware and the added complexity of the soft-
ware.

Note that the choice of DMA versus PIO concerns
how the data is transferred. The choice of using
polling or interrupts concerns how the CPU deter-
mines when the data is ready to be transferred.

DMA and interrupts are features common in larger
systems where it is desirable to minimize the CPU
overhead required for I/O. It is common for a pe-
ripheral to issue an interrupt when data is available,
then for the CPU to set up the DMA controller to do
the actual data transfer and finally for the DMA con-
troller to issue an interrupt when the transfer is com-
plete. In between these events the CPU can continue
with other tasks.

lec11.tex 1



DMA on the IBM PC

The IBM PC and later compatible machines use the
8237 DMA controller. The controller is used to
transfer data between I/O ports and memory. It sup-
ports four prioritized DMA “channels.” Each chan-
nel contains independent address and count regis-
ters and peripheral control lines. Requests for DMA
transfers are prioritized although only one transfer
can be “active” at a time (i.e. a burst mode transfer
must complete before another DMA request is ser-
viced).

The DMA controller is initialized through a num-
ber of on-chip control registers whose details we will
not cover.

The following diagram shows how the 8237 DMA
controller interfaces to the CPU, the I/O devices and
the memory:

82
37

HOLDA

pe
rip

he
ra

l

m
em

or
y

data bus

address bus

IOR/IOW*MEMR/MEMW*

DREQn

DACKn*

HOLD

38
6S

X

The DMA controller uses hold request (HOLD)
and hold acknowledge (HOLDA) signals to ask the
CPU to stop driving the address, data and control
buses so that the DMA controller can drive them to
carry out a transfer.

The DMA controller interfaces to peripherals
through 4 pairs of DMA request (DREQ0 to
DREQ3) and DMA acknowledge (DACK0* to
DACK3*) lines available to peripherals on the sys-
tem bus. Once the DMA controller has control
of the bus, it can also interface to memory and
I/O peripherals using the address bus, data bus and
the memory/I/O read/write control signals (MEMR*,
MEMW*, IOR*, and IOW*).

8237 DMA Operation

Once the appropriate channel of the DMA controller
has been programmed with the memory starting ad-
dress and transfer count, the corresponding periph-
eral is set up to start reading or writing data. For

example, a command could be issued to a disk con-
troller to read a sector or to a sound card to start re-
questing audio samples.

The following sequence of steps take place for a
DMA transfer in cycle-stealing mode:

each time the peripheral is able to transfer a byte
it asserts its DMA request line to the DMA con-
troller

the DMA controller asserts the CPU’s hold re-
quest pin

when the CPU control circuitry is able to sus-
pend execution (at the end of an instruction
or by inserting wait states in T2) it asserts
the hold acknowledge (HOLDA) signal to the
DMA controller and floats the address, data and
control bus signals

the DMA controller then puts the memory ad-
dress on the address bus, asserts either MEMR*
plus IOW* or MEMW* plus IOR* on the con-
trol bus and asserts the appropriate DMA ac-
knowledge line to the peripheral

the peripheral responds to the DMA acknowl-
edge signal by reading or writing it’s data to the
data bus

at the same time the memory responds to the
MEMR*/MEMW* control signal which causes
the data to be read/written directly from/to
memory

at the end of the bus cycle the DMA controller
then negates hold request line and the CPU can
continue to execute until the next DMA request

Exercise: Draw a timing diagram to illustrate the behaviour of

the signals involved in a DMA cycle.

2


