
ELEC 379 : MICROCOMPUTER SYSTEM DESIGN

1997/98 WINTER SESSION TERM 2

Assignment 7 - Priority Interrupt Controller
Due April 3, 1998

Question 1

In this assignment you will write a synthesizeable
VHDL description of a priority interrupt controller
(PIC) that is a simplified version of the Intel 8259
PIC. This controller differs from a real 8259 in that
it:

uses a clock to latch interrupt requests at clock
edges

has a synchronous reset input

always operates in the (fully nested) mode used
in the IBM PC

always has all interrupts enabled

cannot be cascaded

has a single-cycle interrupt-acknowledge
(IACK) cycle

has no status or configuration registers that can
be read or written except for the interrupt type
during IACK

always supplies an interrupt type during IACK
of 0x40 plus the interrupt request number (0x40
to 0x47)

does not have a tri-state data bus output (the data
bus is always an output)

The PIC has the following inputs:

clk - the CPU clock. Each CPU cycle (idle, write or
IACK) takes one clock cycle. The cycle starts
on the rising edge of this clock. The three other
inputs may be assumed to be valid at the start
of a CPU cycle and to meet all required setup
times.

reset - reset input.

wr* - a write strobe which is asserted at the start of
a write cycle (when an EOI is being written to
the PIC, see below).

inta* - an interrupt acknowledge bus signal which
is asserted at the start of an IACK cycle.

ir (7 downto 0) - interrupt request inputs,
latched on rising edge of clk at the start of all
cycles.

The PIC has the following outputs:

int - interrupt request. Is asserted when the PIC is
requesting an interrupt.

d(7 downto 0) - data bus. Outputs the interrupt
type for the CPU to read during an IACK cy-
cle.

The states of the various interrupts can be defined
by two 8-bit registers, the Interrupt Request Register
(IRR) and the In-Service Register (ISR). Bits in the
IRR indicate interrupts that have been requested but
not acknowledged. Bits in the ISR indicate interrupts
that have been acknowledged but for which the CPU
has not yet sent the PIC an EOI instruction (i.e. their
interrupt service routines have not completed).

Your design should be a synchronous Moore
state machine (the outputs and internal state should
change only at the rising clock edge and the inputs
should only be sampled at these clock edges).

The behaviour of the PIC is as follows:

both ISR and IRR are cleared if reset is asserted

an IRR bit is set when its IR input is high

the highest IRR bit is reset at the start of an
IACK cycle

the ISR bit corresponding to the highest IRR bit
is set at the start of an IACK cycle (before the
IRR bit is reset)

asg7.tex 1

the highest ISR bit is reset at the start of a write
cycle (it is assumed that all writes to the PIC are
EOIs)

the data bus always outputs 0x40 plus the num-
ber (0-7) of the highest IRR bit. If no IRR bits
are set then the output should be 0x47 (the low-
est priority). This output need not be latched.

the INT output should be asserted when the
highest IRR bit is higher than the highest ISR
bit. This output need not be latched.

The “highest bit” is the bit corresponding to the
highest priority. The 8259’s IR0 line (least signifi-
cant bit) has the highest priority. You may want to
define a separate entity that implements this “highest
bit” function and instantiate it in your design.

The above rules ensure that interrupt service rou-
tines can be nested but that only an interrupt request
of a higher level than the one currently being ser-
viced will cause an interrupt.

Use the following VHDL entity (signals ending in
“ n” are active-low):

entity pic is
port (clk, reset, wr_n, inta_n : in std_logic ;

ir : in std_logic_vector (7 downto 0) ;
int : out std_logic ;
d : out std_logic_vector (7 downto 0)) ;

end ;

Write a synthesizeable VHDL description of
this device. Test it using the test bench in
˜elec379/asg7tb.vhd. When it passes the test
bench synthesize it using the class library as with
previous assignments. Hand in a listing of your code,
the simulation log file and a schematic.

Hints: (1) This circuit is sufficiently simple that
your design can consist of only a data path with no
controller entity. (2) The and, or, and not opera-
tions can be applied to std_logic_vectors to set
and clear bits in registers.

2

