
ELEC 379 : MICROCOMPUTER SYSTEM DESIGN

1997/98 WINTER SESSION TERM 2

Hints for Assignment 3

Question 1

These sample answers to the questions in the first
part of Assignment 3 are provided to reduce the time
required to complete the assignment. You do not
need to use this design. You should still provide an-
swers to the questions posed in the assignment, even
if you use the solution given below.

The product of two 16-bit numbers can have up to
32 bits. The running sum, c, must therefore be stored
in a 32-bit register. The value b will be shifted left
up to 15 times before the algorithm terminates so it
must be stored in a register of at least 31 (16+15) bits
wide. The value of a is never more than 16 bits so it
can be stored in a 16-bit register.

The registers required to implement the algorithm
are thus:

signal rc unsigned (31 downto 0) ;
signal rb unsigned (30 downto 0) ;
signal ra unsigned (15 downto 0) ;

where I have used the variable ra to distinguish the
input port a from the register ra.

From the description of the algorithm, the follow-
ing datapath operations are required:

set rc to zero, ra to a, and rb to b
set rc to the sum of rc and rb
shift ra right by 1 bit and shift rb left by 1 bit

other choices are possible as long as some sequence
of the chosen operations will implement the multi-
plication algorithm.

In this case we can use three independent control
signals to control each of the above operations, these
will be called:

load
add
shift

respectively. Again, other choices are possible as
long as the operations can be mapped into unique
combinations of the control signals. In this case only
four combinations of the three operations will turn
out to required so we could also have mapped these
four operations into two control signals.

Only two status signals are required from the dat-
apath: one to indicate that the value of a has reached
zero and one to indicate whether the least-significant
bit of a is one or zero:

azero - register a is zero
lsbset - L.S. bit of a is a ’1’

The following is a possible choice of controller
states and the corresponding operations:

state operations
init none

add_shift add rb to rc if LS bit of ra is 1
and shift ra and rb

done none

The state transition table is as follows:

state reset azero lsbset next state
X 1 X X init

init 0 0 X add_shift
init 0 1 X done

add_shift 0 0 X add_shift
add_shift 0 1 X done

The following example shows how the multiplier
would multiply a= 5 and and b= 3. Each line shows
the reset input, the controller state and the contents
of the registers. The state transitions and register
loads occur at the clock edges (which can be imag-
ined to lie in between the lines). It is assumed that
the a and b entity inputs are set to 5 and 3 during the
cycle 0.

cycle reset state ra rb rc
0 1 X X X X
1 0 init 5 3 0
2 0 add_shift 5 3 0
3 0 add_shift 2 6 3
4 0 add_shift 1 12 3
5 0 add_shift 0 24 15
6 0 done 0 24 15

7 0 done 0 24 15

asg3hints.tex 1



When comparing numeric values that might
be uninitialized you should first convert them to
std_logic_vector types. The comparison will
then be between strings rather than numeric values
and will not generate warnings.

Since a and b are only valid during the one clock
cycle during which reset is active, you need to load
the registers ra and rb at the end of that cycle. This
means the controller will have to be implemented as
a Mealy state machine (the load output is a function
of the input as well as (possibly) the state).

The controller design may have redundant states.

2


