
ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

1999/2000 WINTER SESSION, TERM 2

Solutions for Mid-Term Exam

Question 1

The solution consists of two registers: one to imple-
ment a counter and one to load and hold the count
when the echo signal is asserted. The counter reg-
ister must be 8 bits wide to be able to count up to
150 (27 � 128 and 28 � 256). The counter is reset
to 0 after it reaches 149 so that the counter period is
150 clock cycles. The transmit output is simply a
signal that decodes a zero count. This output should
really be registered to avoid glitches. The following
block diagram shows the solution:

=149

1

0

1

0
8
�

8
�

8
�

echo

+1

0

8
�

8
�

clk

=0 transmit
�

depth

cn
t_

re
g

ou
t_

re
g

Which could be described in VHDL as:

-- EECE 379 1999/2000 Term 2
-- Mid-Term Exam, Question 1
-- Ed Casas, 2000/2/28

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

entity sounder is
port (clk, echo : in std_logic ;
transmit : out std_logic ;
depth : out unsigned (7 downto 0)) ;

end sounder ;

architecture rtl of sounder is
signal cntreg, next_cntreg : unsigned (7 downto 0) ;
signal outreg, next_outreg : unsigned (7 downto 0) ;

begin
-- counter counts from 0 to 149
next_cntreg <=

conv_unsigned(0,8) when cntreg = 149 else
cntreg + 1 ;

-- outreg loads/holds count when echo returns
next_outreg <=

cntreg when echo = ’1’ else
outreg ;

-- register count and output
process(clk)
begin

if clk’event and clk=’1’ then
cntreg <= next_cntreg ;
outreg <= next_outreg ;

end if ;
end process ;

-- generate transmit pulse for one clock period
transmit <=

’1’ when cntreg = 0 else
’0’ ;

-- connect output
depth <= outreg ;

end rtl ;

Figure 1 show the simulation results.

Question 2

There are many possible solutions. A solution writ-
ten in C could be as follows:

/*
EECE379 1999/2000 Term 2
Mid-Term exam Solutions
C solution for Question 2

*/

/* Return a non-zero value if the headlight switch is on, zero
otherwise. */

int swtch()
{
return inb(0x300) & 0x80 ;

}

/* Return a non-zero value if the clock signal is ’1’, zero
otherwise. */

int clock()
{
return inb(0x300) & 0x01 ;

}

/* Turn the headlight on if ’on’ is non-zero, off otherwise. */

void setlights(int on)
{
outb(0x300,on?1:0) ;

}

midsol.tex 1

[I] clk

[O] transmit

[I] echo

[O]depth 00 05

1.0us 2.0us 3.0us 4.0us 5.0us 6.0us 7.0us 8.0us 9.0us 10.0us 11.0usName: Value:

Figure 1: Simulation output.

main()
{

int i, prev ;

while (1) { /* loop forever */

off:
setlights(0) ; /* turn lights off */
while (! swtch()) ; /* wait until switched on */

on:
setlights(1) ; /* turn lights on */
while (swtch()) ; /* wait until switched off */

for (i=0 ; i<30 ; i++) { /* delay 30 s */
prev = clock() ; /* get initial clock */
while (clock() == prev) { /* wait for change */

if (swtch()) goto on ; /* check for on */
}

}

}

}

Which could be written in assembler as follows.
The comments are references to the C version (rather
than following good commenting style).

code segment public
assume cs:code,ds:code
org 100h

start:

off: mov al,0 ; set(0)
call set

off1: call switch ; while ! switch()
jz off1

on: mov al,1 ; set(1)
call set

on1: call switch ; while switch()
jnz on1

mov ax,0 ; count=0
mov count,ax

delay: mov ax,count ; while count < 30
cmp ax,30

jge end_delay

call clock ; prev=clock()
mov prev,al

wait: call clock ; while clock() == prev
cmp al,prev
je end_wait

call switch ; if switch() goto on
jnz on

jmp wait
end_wait:

mov ax,count ; count++
add ax,1
mov count,ax

jmp delay

end_delay:

jmp start

switch: ; return switch state
mov dx,300h
in al,dx
and ax,80h
ret

clock: ; return clock signal
mov dx,300h
in al,dx
and ax,01h
ret

set: ; turn lights on/off
mov dx,300h
out dx,al
ret

count dw 1 dup (?) ; delay count
prev db 1 dup (?) ; previous port value

code ends
end start

2

