
ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

1999/2000 WINTER SESSION, TERM 2

DMA, System Buses and Peripheral Buses
Direct Memory Access is a method of transferring data between peripherals and memory without using the CPU.
After this lecture you should be able to: identify the advantages and disadvantages of using DMA and programmed
I/O, select the most appropriate method for a particular application, and describe the sequence of events that takes
place during a DMA transfer on the IBM PC.
System buses are the buses used to interface the CPU with memory and peripherals on separate PC cards. The ISA
and PCI buses are used as examples. You should be able to state the most important specifications of both buses.
Serial interfaces are typically used to connect computer systems and low-speed external peripherals such as modems
and printers. Serial interfaces reduce the cost of interconnecting devices because the bits in a byte are time-multiplexed
onto a single wire and connector.
After this lecture you should be able to describe the operation and format of data and handshaking signals on an
RS-232 interface.
Parallel ports are also used to interface the CPU to I/O devices. Two common parallel port standards, the “Centron-
ics” parallel printer port and the SCSI interface are described.
After this lecture you should be able to design simple input and output I/O ports using address decoders, registers and
tri-state buffers.

Programmed I/O

Programmed I/O (PIO) refers to using input and out-
put (or move) instructions to transfer data between
memory and the registers on a peripheral interface.

For example, the following section of code reads
512 bytes from an input port 380H and writes the
data to a buffer in memory:

mov bx,buf ; destination address
mov cx,512 ; count
mov dx,380H ; source port

loop:
in al,dx ; get byte from i/o port
mov [bx],al ; store in buffer
inc bx ; next memory location
dec cx ; decrement bytes left
jnz loop

The main advantage of PIO is that it is simple and
inexpensive to implement. In many cases the CPU
will be fast enough to transfer data as fast as the pe-
ripherals (e.g. a hard disk) can supply or accept it.
Often the only additional hardware required is a sta-
tus port that the CPU can poll or a circuit to generate
interrupt requests.

The main disadvantage of PIO is the need to ex-
ecute many instructions for each byte transferred.
This limits the maximum possible data transfer rate.
In a multi-tasking system this CPU overhead and also
reduces the CPU time available for other tasks.

Exercise 80: Using the example above, approximately how

many instructions need to be executed to transfer each byte?

Approximately how many bus cycles will be required?

Direct Memory Access (DMA)

In some cases the CPU may not be fast enough to
keep up with the peripheral or it may be desirable to
allow the CPU to do other useful work while the I/O
is in progress.

In this case a special-purpose processor called a
DMA controller (DMAC) can be used to indepen-
dently transfer data between memory and I/O de-
vices. The DMA controller periodically takes over
control of the bus from the CPU, and generates ad-
dress, data and control signals to transfer data be-
tween memory and I/O devices.

The DMA controller is a special-purpose device
designed explicitly for this data transfer function. It
can perform all the operations required for data trans-
fer (increment the memory address, decrement the
count, input, write, and test for operation complete)
in one bus cycle. Thus the bus (and the CPU) is only
tied up for one bus cycle per byte transferred.

Cycle Stealing and Burst Modes

DMA controllers can operate in a cycle stealing
mode in which they take over the bus for each byte of

lec6.tex 1

data to be transferred and then return control to the
CPU. They can also operate in burst mode in which a
block of data is transferred before returning bus con-
trol to the CPU. The choice depends on the speed at
which data is arriving relative to the bus bandwidth
and whether applications will allow the CPU to be
cut off from the bus for the duration of one transfer.

One- and Two-Step DMA Transfers

In most cases the DMAC is part of a peripheral de-
vice. The DMAC takes over the bus and transfers
one value between the device and the memory in one
bus cycle.

A DMA controller can also be designed to trans-
fer data in a two-step process by reading a value from
one port or address in one bus cycle and writing that
value to another port or address in a second bus cy-
cle. This allows the DMAC to transfer data between
memory and registers on other devices.

On the IBM PC the DMA controller uses special
DMA control lines on the system bus transfer data
directly between the I/O device and memory in the
same bus cycle.

DMA versus PIO

It makes sense to use DMA when it is necessary to
transfer data faster than the CPU can transfer it or
when it is desirable to reduce the CPU or bus band-
width overhead used by I/O operations. The disad-
vantage of using DMA are the additional cost of the
hardware and the added complexity of the software.

Note that the choice of DMA versus PIO concerns
how the data is transferred. The choice of polling or
interrupts determines how the CPU determines when
the data is ready to be transferred. All four combi-
nations of polling/interrupts and PIO/DMA are pos-
sible.

DMA and interrupts are features common in larger
systems where it is desirable to minimize the CPU
overhead required for I/O. It is common for a pe-
ripheral to issue an interrupt when data is available,
then for the CPU to set up the DMA controller to do
the actual data transfer and finally for the DMA con-
troller to issue an interrupt when the transfer is com-
plete. In between these events the CPU can continue
with other tasks.

DMA on the IBM PC

The IBM PC and later compatible machines use the
8237 DMA controller. The controller is used to
transfer data between I/O ports and memory. It sup-
ports four prioritized DMA “channels.” Each chan-
nel contains independent address and count regis-
ters and peripheral control lines. Requests for DMA
transfers are prioritized although only one transfer
can be “active” at a time (i.e. a burst mode transfer
must complete before another DMA request is ser-
viced).

The DMA controller is initialized through a num-
ber of on-chip control registers whose details we will
not cover.

The following diagram shows how the 8237 DMA
controller interfaces to the CPU, the I/O devices and
the memory:

82
37

HOLDA

pe
rip

he
ra

l

m
em

or
y

data bus

address bus

IOR/IOW*MEMR/MEMW*

DREQn

DACKn*

HOLD

38
6S

X

The DMA controller uses the CPU’s hold request
(HOLD) and hold acknowledge (HOLDA) signals to
ask the CPU to stop driving the address, data and
control buses so that the DMA controller can use
them to carry out a data transfer.

The DMA controller interfaces to peripherals
through 4 pairs of DMA request (DREQ0 to
DREQ3) and DMA acknowledge (DACK0* to
DACK3*) lines available to peripherals on the sys-
tem bus. Once the DMA controller has control
of the bus, it can also interface to memory and
I/O peripherals using the address bus, data bus and
the memory/I/O read/write control signals (MEMR*,
MEMW*, IOR*, and IOW*).

The peripheral interface (e.g. floppy disk con-
troller) must be designed to assert a DREQ line when
a byte can be read or written from the peripheral. It
must also be designed to read/write from/to the I/O
device when the corresponding DACK signal is as-
serted by the DMA controller.

2

8237 DMA Operation

Once the appropriate channel of the DMA controller
has been programmed with the memory starting ad-
dress and transfer count, the corresponding periph-
eral is set up to start reading or writing data. For
example, a command could be issued to a disk con-
troller to read a sector or to a sound card to start re-
questing audio samples.

The following sequence of steps take place during
a DMA transfer:

� each time the peripheral is ready to transfer a
byte it asserts its DMA request line to the DMA
controller

� the DMA controller asserts the CPU’s hold re-
quest pin

� when the CPU control circuitry is able to sus-
pend execution (typically at the end of an
instruction) it asserts the hold acknowledge
(HOLDA) signal to the DMA controller and
floats (“tri-states”) the address, data and control
bus signals

� the DMA controller then puts the memory ad-
dress on the address bus, asserts either MEMR*
plus IOW* or MEMW* plus IOR* on the con-
trol bus and asserts the appropriate DMA ac-
knowledge line to the peripheral

� the peripheral responds to the DMA acknowl-
edge signal by reading or writing it’s data to the
data bus

� at the same time the memory responds to the
MEMR*/MEMW* control signal which causes
the data to be read/written directly from/to
memory

� at the end of the bus cycle the DMA controller
then negates hold request line and the CPU con-
tinues to execute until the next DMA request

Exercise 81: Is this an example of a one- or two-step transfer?

Is this a cycle-stealing or burst mode transfer?

Exercise 82: Draw a timing diagram to illustrate the behaviour

of the signals involved in a DMA cycle.

Limitations of the IBM PC’s DMA

Unfortunately, the 8237 DMA controller’s address
registers are only 16 bit wide and so it’s not pos-
sible to do DMA transfers accross 64k boundaries.
Also, the DMA controller does not have access to the
logical-to-physical address translation used on 386
and later CPUs so it’s impossible for user-space pro-
grams to use DMA under operating systems that use
virtual memory.

Exercise 83: Most peripherals’ DMA operations can be dis-

abled. How many DMA-using peripherals can be installed in a

PC ? How many DMA transfers can be taking place at the same

time?

System Buses

To increase their flexibility, most general-purpose
microcomputers include a system bus that allows
printed circuit boards (PCBs) containing memory or
I/O devices to be connected to the CPU. This allows
microcomputer systems to be customized for differ-
ent applications. The use of a standard bus also al-
lows manufacturers to produce peripherals that will
work properly with other manufacturers’ computer
systems.

The system bus consists of a number of paral-
lel conductors on a “backplane” or “motherboard.”
There are a number of connectors or “slots” into
which other PCBs containing memory and I/O de-
vices can be plugged in.

In most cases the system bus is very similar to the
processor bus. In fact, the simplest system buses sim-
ply consists of a connector that allows access to all
of the pins on the CPU chip. Like the processor bus,
the system bus can be subdivided into an address bus,
data bus, control bus and power connectors.

Some microcomputer designs place the CPU and
some auxiliary circuits on a PCB (the “mother-
board”) along with system bus connectors. Exam-
ples of this approach include most popular IBM PC-
compatible systems. Other designs use a simpler
passive “backplane” type of bus and place the CPU
on its own PCB. This approach is used by most
VME-based microcomputers. The latter approach
has the advantage that the CPU card can be replaced
if required. Because the bandwidth required for the
RAM interface is much higher than that for most

3

other peripherals, most modern systems use a system
bus only for I/O devices and either use a proprietary
interface for RAM or simply place all of the RAM
memory on the same PCB as the CPU.

A bus can be described by its mechanical (size,
types of connectors, etc), electrical (voltage, clock
rates, etc), and protocol (read/write cycles, mas-
ter/slave operation, interrupt acknowledgement, etc)
characteristics.

We will look briefly at two examples of system
buses. The ISA (Industrial Standard Architecture)
bus is commonly used in IBM-PC compatibles and
is one of the most widely-used system buses. The
PC-104 bus (the one used in the lab computers) uses
the same signals as the ISA bus but has a different
connector. The PCI (Peripheral Component Inter-
connect) bus is a flexible high-performance periph-
eral bus that can efficiently interconnect peripherals
and processors of widely different speeds.

Mechanical Characteristics

Low-cost consumer-grade buses use card-edge con-
nectors to minimize the cost of the peripheral. The
plug-in card has contact pads along the edges of the
PCB. The motherboard has connectors on the moth-
erboard that contact these pads. Typical examples
include the ISA and PCI busses.

Some buses use connectors on both the mother-
board and the card. This adds to the cost of the card
but makes for more reliable contacts. A typical ex-
ample is the 3-row by 32-pin (96-pin) “DIN” con-
nector used by the VME bus.

Electrical Characteristics

The electrical characteristics include the voltage and
current specifications, types of bi-directional signals
and impedance matching.

Bus Drivers and Receivers

Bus signals such as clocks or data lines often drive
several chips on a peripheral card. If the load pre-
sented by the card exceeds the bus specifications then
buffer chips (“bus receivers”) must be used. Simi-
larly, if the output driving capacity of a chip on the

peripheral card is not enough to drive the load pre-
sented by the bus, a “bus driver” must be used to
buffer the signal.

Bidirectional Buses

Some bus signals can be driven by multiple cards.
For example, the data bus will be driven by all pe-
ripheral devices as well as the CPU. Two common
methods are open-collector and tri-state outputs. As
always, care must be taken in the design to prevent
multiple simultaneous outputs on the same bus line
(bus conflicts).

Open-Collector (OC) Logic

OC outputs can only sink current, not source it. A
pull-up resistor is used to pull that particular bus line
to Vcc. Any device connected to that line can pull the
signal low. The choice of pull-up resistance is also a
compromise between rise time and power consump-
tion. The resistance of the pull-up resistor must low
enough to obtain a sufficiently fast rise time and yet
the resistance must be high enough to limit the cur-
rent through it to a value that will not damage the OC
outputs.

Tri-State Logic

Tri-state logic outputs can be set to a high output, a
low output or a high-impedance mode. They are used
to drive bus signals that might be driven by more than
one device.

For example, on a system that has multiple bus
masters the address data bus must be driven by tri-
state outputs and the data bus driven by tri-state bus
transceivers.

Dynamic Contention

It should be remembered that buffers (receivers,
drivers and transceivers) take a finite time to switch
modes. A detailed timing analysis is necessary to en-
sure that two outputs will not be enabled simultane-
ously. This analysis will needs to take into account
the CPU timing as well propagation delays for the
circuits that control the buffer directions.

4

Impedance and Termination

To analyze the performance of the bus for the short
rise times required in high-speed buses the bus must
be treated as a transmission line.

The pulse generated by a bus driver will propa-
gate down the bus. If the bus is not terminated on
both ends by the characteristic impedance of the bus
a portion of the signal will be reflected. The reflec-
tions will propagate back along the bus and appear
as ringing and noise. In addition, there will be re-
flections from each point where a card is connected
to the bus.

For the above reasons it is important that high-
speed buses be terminated in the characteristic
impedance of the bus. The typical characteristic
impedance is on the order of 100 ohms. “Active”
terminations connect a resistor of about this value to
a low-impedance voltage source at about half of Vcc

to minimize the current drawn by the termination.

ISA Bus

The bus used for expansion cards by the original
IBM PC was designed to support expansion memory
and peripherals such as video displays and parallel
printer ports. It had the same 8-bit data bus and 20-
bit address space as the Intel 8088 processor in the
PC. The subsequent PC/AT (ISA) bus used a second
card-edge connector to extended the address space to
24 bits and the data bus to 16 bits.

The PC cards are about 10 cm high, up to 33 cm
long and use one (PC) or two (AT) card-edge con-
nectors.

Intel chips have a separate I/O address space and
the ISA bus includes MEMR* (memory read) and
MEMW* (memory write) and IOR* (I/O read) and
IOW* (I/O write) strobes.

The ISA bus is synchronous. The CPU performs
fixed-length read and write cycles although a WAIT
signal is available on the bus so that slow peripherals
can request wait states.

The PC bus has 6 active-low interrupt request lines
(IRQ2* to IRQ7*). The PC motherboard has a pro-
grammable interrupt controller chip (intel 8259) that
arbitrates different levels of interrupt requests and
generates an interrupt number in response to the pro-
cessor’s interrupt acknowledge cycle.

The bus also has 3 DMA request (DRQ*) and ac-
knowledge (DACK) lines that can be used by periph-
erals with DMA capabilities.

The PC/AT (ISA) bus (but not the PC/XT bus) al-
lows for a limited form of external bus mastering.

PCI Bus

The PCI bus is a higher-performance peripheral (sys-
tem) bus. The PCI bus maximizes CPU performance
by decoupling the CPU and peripheral buses as much
as possible. This decoupling also makes the bus rel-
atively independent of the host CPU architecture.

The PCI bus is connected to the CPU bus by
means of a bridge. This is an interface circuit that
multiplexes address and data signals from the CPU,
buffers (caches) data transferred between the CPU
and the cards on the PCI bus, and optimizes access
to sequential memory locations.

The PCI bus has a multiplexed 32-bit address/data
bus and runs at 33 MHz. A read cycle takes 3 clock
cycles and a write cycle takes 2 clock cycles. Thus
the bus bandwidth is 44 or 66 MB/s.

If consecutive memory locations are being ac-
cessed the PCI bus allows sequential read or write
cycles to proceed without explicitly putting the ad-
dress on the bus. In this case one 32-bit word can be
transferred in each clock cycle for a bus bandwidth
of 132 MB/s.

The buffering provided by the PCI bridge allows
the CPU to write data to PCI peripherals without in-
curring wait states. The CPU can continue executing
at full speed while the bridge takes care of the hand-
shaking with the peripheral. The PCI bridge can also
pre-fetch data to improve performance on reads.

It is also possible to use a second bridge between
the PCI bus and another type of bus, for example, an
ISA or VME bus. This allows slow peripherals to be
efficiently interfaced to the CPU because this second
bridge takes care of the details of interfacing the PCI
bus and the slower bus.

The basic PCI bus signals include:

5

Signal Purpose
AD0 to AD31 multiplexed address and data
FRAME* indicates start of transfer
C/BE0 to C/BE3 type of cycle and byte enables
IRDY*, TRDY* ready (to generate wait states)
CLK clock
REQ*/GNT* bus request/grant

Unlike the ISA bus, the PCI bus allows DMA by
allowing different cards to acquire control over the
bus. Each card has bus REQuest* and bus GraNT*
signals that are used to communicate with a bus ar-
bitration circuit.

There is also a 64-bit extension to the PCI bus that
increases the maximum bus bandwidth to 33 � 8 �

266 MB/s.

RS-232 Interface

In addition to system buses that allow PC cards to be
connected to a CPU, there are also peripheral “buses”
that allow peripheral devices to be connected to a
computer.

The most widely used peripheral interface is the
“RS-232” serial interface. This interface is available
on most general-purpose microcomputers.

DTE and DCE

The serial interface was originally designed to con-
nect modems (Data Communications Equipment -
DCE) to computer terminals (Data Terminal Equip-
ment - DTE). In its simplest form the interface has
two signal lines, Transmit Data (TxD or TD) and
Receive Data (RxD or RD), and a ground reference.
The TxD signal is an output on a DTE device and an
input on a DCE device. Similarly, RxD is an output
on a DCE device and input on a DTE device.

DCEDTE

(modem)("terminal")

TxD

RxD

 TxD

 RxD

Exercise 84: Is the “Transmit Data” (TxD) signal an input or

an output? How about “Receive Data” (RxD)? Is a computer a

‘modem’ or a ‘terminal’?

The standard RS-232 connector is a 25-pin D-style
connector (a “DB-25”). Pin 2 is TxD, pin 3 is RxD
and pin 7 is signal ground. Two serial devices are
connected pin-to-pin (RxD is connected to RxD and
TxD is connected to TxD). This means that RxD
must be an input on one device and an output on
the other device. Thus the terms RxD and TxD do
not say whether a pin is an input or output but are
instead names for pins on the connector. Typically
DTE connectors are male and DCE connectors are
female.

In addition to the two data lines, most RS-232 de-
vices implement additional handshaking pins. Of
these, the most useful are called RTS (Request To
Send) and CTS (Clear To Send). The CTS pin is a
DCE output and is used by the DCE to indicate that
it can accept data on the TxD line. The RTS line is an
output on a DTE and is used to indicate that the DTE
wants to send (RTS was originally used to control
half-duplex modems – these are rarely seen today).

Since these signals are used to control the flow of
data from the DTE (and optionally from the DCE)
these pins are called [hardware] “flow control” sig-
nals.

DCEDTE

(modem)("terminal")

RTS RTS

 CTSCTS

DSR DSR

DTR DTR

The second set of control signals are DTR (Data
Terminal Ready) and DSR (Data Set Ready). These
signals indicate that the DTE and DCE devices re-
spectively are connected and operational (typically,
simply that the power is turned on). Some modems
can use DTR to force a reset and DSR as a replace-
ment for CD (see below).

In the original RS-232 specification there was no
provision for hardware flow control of data from the
DCE to the DTE. However many modems change
the semantics of RTS so that it is used to flow control
data from the modem to the terminal (“bidirectional
RTS/CTS flow control”) .

Exercise 85: Which data line (TxD or RxD) would RTS flow

control in this case?

6

A number of other handshaking signals are avail-
able but are less widely used. Carrier Detect (CD)
is asserted by modem-type DCEs when a carrier sig-
nal is present. This signal is typically used by system
software to indicate the start and end of a dial-up ses-
sion. This signal is seldom used. The RS-232 spec-
ification defines a number of other signals (e.g. a
secondary serial interface) but they are almost never
used.

In addition to the standard DB-25 serial con-
nector, there are a number of smaller connectors
that are widely used. These connectors are physi-
cally smaller and carry a subset of the RS-232 pins.
The most common are the DB-9 connectors popu-
lar on IBM PC-AT clones, the round DIN connectors
(popular on Apple computers), and the inexpensive
telephone-style “RJ-11” (6-pin) and “RJ-45” (8-pin)
connectors (popular on devices with many serial in-
terfaces).

Adapters are often used not only to convert be-
tween different styles of connectors but also to con-
vert between male and female connectors (a “gender
adapter” which allows two males or two females to
be connected together) and to switch between DCE
and DTE pinouts (a “null modem” which allows two
DCEs or two DTEs to be connected together).

Interface Voltages

The serial interface voltage levels are bipolar with
respect to ground. The table below summarizes the
relationship between voltage level, logical meaning
on handshaking lines and data bit value (values on
TxD and RxD lines).

Signal Line For For
Level State Handshaking Data

negative mark false 1
positive space true 0

The received signal must be greater than +3 volts
to be considered positive and less than -3 volts for
negative. Intermediate values are considered invalid.
This allows disconnected pins to be detected.

Note: The data lines (TxD and RxD) are asserted
when negative. The control lines (e.g. CTS) are as-
serted when positive.

Character Format

Data is transferred over the serial interface one bit at
a time. A positive (zero) bit (the “start bit”) is sent
to indicate the start of the character being sent. This
is followed by the bits in the character, from LS to
MS bit. After sending the 7 (for plain ASCII) or 8
(for arbitrary bytes) bits, an optional parity bit (even
or odd) can be sent, followed by a one “stop” bit.

Exercise 86: Draw the waveform used to send the ASCII char-

acter ’e’ (hex 65) at 9600 bps with no parity.

The start bit allows a receiver to re-synchronize
itself at the start of each character. This allows
for small variations between transmitter and receiver
timing.

Exercise 87: What happens if the receiver’s clock is running

faster than the transmitter clock?

The stop bit guarantees that there will be a tran-
sition at the start of each character. It also allows
a receiver to re-synchronize to a character boundary
in the middle of a continuous data stream. If the re-
ceiver does not see a ’one’ stop bit (called a “framing
error”) it knows it is unsynchronized and treats that
bit as a start bit. Eventually the receiver will syn-
chronize to an actual start bit.

Exercise 88: What would happen if the receiver was expecting

8-bit characters and the transmitter was sending 7-bit charac-

ters? What about the reverse case?

There are a number of standard bit rates, typically
powers of two times 1200 bps (1200, 2400, 4800 bps
etc). The RS-232 standard specifies maximum bit
rates, distances, etc but these are usually ignored in
practical applications. For short distances it’s possi-
ble to send in excess of 100 kbps.

The RS-422 serial interface specification uses a
similar signaling scheme but uses differential signals
(opposite voltages on two signal lines) to increase
immunity to noise and increase maximum transmis-
sion distance. Data rates up to 1 Mbps are common.

Serial Interface Chips (UARTs)

Except at the lowest speeds it is not possible for a
microcomputer to generate the serial bit stream using
software. A peripheral chip called a Universal Asyn-
chronous Receiver Transmitter (UART) is used to
do the conversion from bytes to serial bits and vice-

7

versa. UARTs designed as microcomputer peripher-
als have control registers that are used to configure
the chip for various baud rates, word lengths, num-
ber of stop bits, FIFO sizes, and interrupt options.
UARTs also have status registers that can be used to
indicate whether a character has been received or not,
whether the previous transmitted character has been
sent, and any error conditions.

Since the CPU may not be able to retrieve a re-
ceived character as soon as it is read, most UARTS
have FIFO (first in first out) buffers to store one or
more received characters while other characters are
being received.

Special chips are used to convert the logic voltages
used by the UARTs to/from the RS-232 signal levels.

There are also chips (USARTs) that perform the
same functions as UARTs but can also handle syn-
chronous data streams including the HDLC framing,
bit stuffing and error checking.

Synchronous Interfaces

One problem with asynchronous interfaces is the 2
bit per byte (25%) penalty imposed by the start and
stop bits. In a synchronous interface the data source
supplies a clock signal along with the data to be sent
and the receiver is supplied with a clock as well as
the received data.

Device such as modems that need to transmit the
signal over a single pair of wires use circuits to
regenerate the clock signal at the receiver. Syn-
chronous serial interfaces are often embedded in
links between peripherals rather than between the
computer and an external device. For example all
modern modems use synchronous signaling between
themselves.

A problem with synchronous interfaces is that
some means must be provided to find the start of
the desired data within a continuous bit stream. The
HDLC (High-level Data Link Control) protocol, of-
ten used over synchronous bit stream channels, uses
a procedure called bit stuffing. HDLC uses “flag”
sequences of a zero, 6 consecutive ’1’ bits and an-
other zero at the start and end of each frame to di-
vide the data stream into frames. In order to prevent
sequences of 6 ’1’ bits in the data from being mis-
interpreted as terminating a frame, a zero bit is in-
serted immediately after into any data sequence of 5

’1’ bits. At the receiver a ’0’ received after 5 ’1’s
is removed. The HDLC frame includes one-byte ad-
dress and control fields at the start of the frame and a
16-bit check-sum (a CRC, actually) at the end.

Exercise 89: Approximately how much overhead does bit stuff-

ing add to a random data stream (hint: what is the probability that

the previous 5 bits in a random data stream were 0?)?

Serial Device Interfaces

Another type of serial interface is used to connect
peripheral chips such as A/D converters, serial EEP-
ROMs, FPGAs or other microprocessors to a micro-
processor. The purpose of these serial interfaces is
to reduce the pin count. These interfaces are often
found on microcontrollers and DSP microprocessors
and include both a data line and a clock line. The
clock can be driven by the processor (the CPU is
called the “master”) or by the source of the data (the
CPU is the “slave”).

Exercise 90: What type of sequential logic device(s) would be

used to implement this type of serial interface?

Other Serial Interfaces

The Universal Serial Bus (USB) peripheral interface
is a relatively new bus designed to connect “desktop”
peripherals to a PC. It uses a 4-wire cable carrying
power and a differential signaling. The data rate is ei-
ther 1.5 or 12 MB/s. The data format is synchronous,
with NRZI (0 is a change in level, 1 is no change in
level) encoding, bit stuffing and CRCs used. An 8-bit
sync pattern is sent at the start of each packet.

All devices on the USB bus are controlled by one
host (typically a PC) and peripherals are connect to
the host in a tree topology using “hubs.’ The host
polls devices for data and control messages and data
are exchanged in packets. The USB protocol allows
devices to be inserted and removed dynamically.

There are many other serial interface standards.
For example, the IEEE 1394 (“Firewire”) bus is often
used in digital video systems.

Parallel I/O Ports

The interface between a CPU and I/O devices is
through registers that appear in the memory or I/O

8

address spaces of the processor. Through these reg-
isters the CPU can input (read) or output (write) a
number of bits (often one byte) at a time.

Typical examples of I/O port include output ports
that drive LEDs, ports to scan a keypad, ports to
control machinery, etc. More complex I/O inter-
faces such as floppy disk controllers or serial inter-
face chips usually contain several I/O ports. Some
ports are used to obtain status information about the
interface through “status registers” and other ports
can control the interface’s operation through “control
registers.”

For example, a printer interface on the IBM PC
has associated with it a status port that can be used to
obtain certain status information (busy, on-line, out
of paper, etc). The printer interface also has a control
port that can be used to reset the printer and set the
automatic line feed mode. In addition, there is an
output port that is used to output the character to be
printed.

Implementation of I/O Ports

Output

Output ports are implemented using registers. The
register’s data inputs (D) are connected to the CPU
data bus and the register’s clock input is driven by a
write strobe (e.g. MEMW*). In addition, an address
decoder is used to make sure the register is only re-
loaded when the CPU is addressing the desired I/O or
memory address. The rising edge of the write strobe
loads the data into the register output (Q) and this
output stays fixed until the register is written again.

The following schematic shows how a register
could be connected to operate as an output port. The
CPU’s write strobe (WR*) is used to clock the data
into the register, but only if the address on the CPU
bus corresponds to the address of the output port:

address

data
D Q

WR*

8
8

IO/M*
address
decoder

address of
port

The following timing diagram shows the relation-
ship between the signals. Note that the output is held
after the rising edge of the write strobe (WR*):

data

Q

WR*

address

Input

Input ports can also be implemented with a minimum
of hardware. A tri-state buffer is used to connect the
external digital input to the CPU’s data bus during a
read cycle if the CPU is addressing the memory or IO
address assigned to that input port. The read strobe
(RD*) is used to enable the buffer so that it connects
the external input to the CPU data bus.

The following schematic shows how a register
could be connected to operate as a parallel input port.
The CPU’s read strobe (RD*) is used to enable the
output of a tri-state buffer when RD* is active and
the address corresponds to the address of the input
port:

CPU data
bus (D0−D7)

address address
decoder

parallel
 input oe

8 8

IO/M*

RD*

The value read by the CPU will be the value on the
input at the time that the port is read.

9

“Centronics” Parallel Printer Port

This simple unidirectional (output only) interface is
used to drive printers. There are 8 data lines and two
data transfer control lines, STROBE* and BUSY.
BUSY is an output from the printer that is high when
the printer cannot accept data. STROBE* is a an
output from the PC which is strobed (brought low
and then high again) to transfer the data on the data
lines to the printer. This interface uses TTL (L � 0V
H ��� 5V) signal levels.

Data

STROBE

BUSY

C
om

pu
te

r

P
rin

te
r

8

To write a character to the printer the computer
waits until busy is low, puts the character on data
lines and brings STROBE* low and then high again.

Data

BUSY

valid data

printer ready to
accept next character

printer becomes busy
time

data for previous character

STROBE*

There are additional handshaking lines to control
various printer features (e.g. auto line feed) and to
indicate various printer status conditions (e.g. out of
paper).

The original IBM PC’s parallel port was an output-
only Centronics-compatible interface but in recent
designs the port can also be configured as an input.
The maximum speed depends on the CPU speed and
software used but is typically 50 to 100 kbytes/s.

IEEE standard 1284 specifies a parallel port that
is bidirectional and allows for higher-speed transfers
by using hardware to take care of the handshaking
operations.

Small Computer System Interface
(SCSI)

This parallel interface allows for bidirectional data
transfer. Up to 8 hosts (“initiators”) and peripherals
(“targets”) can be connected together in a bus (paral-
lel) topology. The SCSI interface is well defined and
is available on many different computers. It is widely
used to connect computers to disk and tape drives,
CD-ROMs, scanners, high-speed printers, etc.

The SCSI interface includes a protocol for arbi-
trating access to the bus by initiators and for select-
ing a specific target. The actual data transfers over
the SCSI bus use a similar request/acknowledge pro-
tocol with each byte transfer being acknowledged by
the target before another byte is transferred.

Depending on the speed of the peripheral and the
host interface the bus can transfer data at up to sev-
eral megabytes per second. The SCSI devices at-
tached to the bus are electrically connected in par-
allel with each device configured to respond to a par-
ticular bus ID number (ID).

The physical interface uses a 50-pin cable with
two connectors on each device so that they can be
daisy-chained. Because of the high bus speeds, care
has to be taken to properly terminate the bus in
it’s characteristic impedance to minimize reflections.
The SCSI bus uses TTL-level signals but, since the
signals are bi-directional, open-collector or tri-state
drivers are used.

te
rm

in
at

io
n

term
ination

cable cable cable

SCSI peripherals

Another advantage of the SCSI interface is that it
defines a set of common commands for devices with
similar characteristics. This allows the same soft-
ware to drive different devices. For example, the
same generic commands (rewind, skip forward, etc)
can be used to control tape drives from different man-
ufacturers.

Although a SCSI interface can be built using a
simple parallel interface and programmed i/o, this
type of interface is too slow for most applications.

10

SCSI interface chips are available that implement the
interface between the CPU and the SCSI bus and
transfer data using either DMA or on-board FIFOs.

Software Aspects

The value on the output port is set with MOV (if
the port is memory-mapped) or OUT (if the port is
mapped into the I/O space) instructions. Similarly,
the value on an input port is read with a MOV or IN
instruction.

It’s often necessary to set or clear a particular bit
on an output port or to test the value of a particular
bit on an input port. This can be done with bit masks
and the bit-wise logical operations AND and OR.

Other Parallel Interfaces

The IDE/ATAPI parallel bus is used mainly to inter-
face a CPU to disk drivers. It is commonly seen on
IBM-PC compatible computers.

The IEEE-488 standard (also known as the Gen-
eral Purpose Interface Bus (GPIB) and HPIB) is an-
other bidirectional interface. Like the SCSI bus it
allows multiple bus masters (“talkers”) and slaves
(“listeners”). It was developed by HP who named
it HPIB (HP Interface Bus). The standard is called
IEEE-488. This bus is used mostly for control of
laboratory instruments.

11

