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1999/2000 WINTER SESSION, TERM 2

Memory Systems and Timing Analysis

Microprocessor systems use memory ICs to store programs and data. This lecture describes common semiconductor
memory devices and how they are organized in microprocessor memory systems.

After this lecture you should be able to select the appropriate type of memory device for different applications, combine
memory ICs to form memory arrays, and design address decoders.

Timing analysis is the process of verifying that the timing requirements of each chip in a circuit are met. Unless all
timing requirements are met the circuit may fail to operate properly under some conditions.

After this lecture you should be able to draw a timing diagram for a simple circuit, derive expressions for a chip’s
timing requirements from the timing diagram and compute the margin for each requirement based on clock periods
and the guaranteed responses of the other components.

Larger microcomputer systems use Dynamic RAM (DRAM) rather than Static RAM (SRAM) because of its lower cost
per bit. DRAMs require more complex interface circuitry because of their multiplexed address buses and because of
the need to refresh each memory cell periodically.

After this lecture you should be able to: (1) describe basic DRAM structure and terminology, (2) interface DRAMs
to a CPU bus by multiplexing row and column address lines and forcing refresh cycles, and (3) justify the choice of
DRAM or SRAM for a particular application.

Cache memory can greatly increase the processing speed of microprocessors whose CPU cycle time is significantly
shorter than the memory access time. Most modern general-purpose microprocessors include some sort of cache
memory. In this lecture we will introduce cache memory by looking at the design of a direct-mapped cache.

Memory Devices The following diagram shows the input and output
pins on a typical read-only memory (ROM):

ROM

OE
The simplest memory IC is a ROM (read-only mem- cs -
ory). A ROM can be described as a combinational
logic circuit that implements an arbitrary B-bit func- address data
tion of N bits. The N input bits are known as the ROM
address and the B output bits are the data. Such a N B

device is referred to as a 2N by B memory. For exam-
ple, a 4096 by 8 (4kx8) ROM would have 12 address
pin inputs and 8 data pin output.

Like any combinational logic circuit, a ROM can
be described using a lookup table. The following ta-
ble shows some of the contents (in hexadecimal) of a
hypothetical byte-wide device:

The address inputs are typically labeled Ag to
An-1 and the data outputs Dg to Dg_1. The CS (chip
select) and OE (output enable) pins must be active
for data to appear on the output.

Exercise 67: If we wanted to be able to connect the outputs of
several memory chips in parallel, what “state” would the outputs

have to be in when CS or OE were not asserted?
address data

0000 2E _

0001 A3 ROM Implementation

0002 73 A ROM, like any other combinational logic circuit,
could be implemented as a sum-of-products circuit.

FFFF D9 However, the large number of product terms needed

(typically on the order of 2N~1) make this approach
Exercise 66: What are the values of N and B for this device? impractical for large memories. Instead, an N-bit de-
When the values of the address inputs are 0002 (hex) what will coder is used to enable one of 2N word lines. Each
be the values (in binary) of the outputs Dg to D7? word line drives a number of transistors, each of

| ec5. tex 1



which can can pull down one of the bit lines. By
inserting or leaving out transistors, we can set the
output values for each address.

vdd Vvdd vdd Vvdd
word 2V-1
- - - - -
address - -
word 0 ‘ ‘
- - - -
bit 0 bit 1 bit B-2 bit B-1

Exercise 68: Assuming N = 1 and B = 2, what are the contents
of the memory shown above?

RAM

A RAM (random-access memory) chip is a memory
device that can be written as well as read. A RAM
can be described as a sequential circuit in which N
address inputs select one of 2N of B-bit registers.
The following diagram shows the essential pins on
a (RAM):

OE
CS —\I
data in 7%3

address 7?
write

enable

7? data out

RAM

During a write operation the CPU selects one set
of B flip-flops by putting the desired address on the
address pins and the data to be latched (stored) into
the flip-flops on the data input pins. The write enable
pin is used to latch the data into the flip-flops in the
same way that a clock is used in a D flip-flop.

During a read operation a particular set of flip-
flops is again selected by the address pins and the
data previously stored in the flip-flops appears on the
data output pins. In many cases a bidirectional data
bus is used for both data input and data output.

Note that the terms “read” and “write” are always
described from the point of view of the CPU. For
example, during a “read” cycle the CPU reads the

memory contents (even though the memory chip is
“writing” a value to it’s output pins).

As with a ROM, CS must be asserted for either
operation and the OE pin must be asserted during a
read operation.

RAM Implementation

A RAM can be implemented as a bank of flip-flops
together with the associated decoders and multiplex-
ers required to select the desired flip-flop output(s)
and enable loading only the desired flip-flop input(s).
A small RAM, such as a register file in a CPU, would
be implemented this way.

However, implementing large RAMSs this way
would be costly. Large RAMSs use SR latches to store
each bit of information. A decoder selects the set of
latches to be read or written by enabling transmis-
sion gates that connect the complementary SR in-
put/output nodes to circuits that can either alter or
read the memory contents.

word 2"-1

address

word 0

bit 0 bit 0 bit B bit B

Combining Memory Chips

There are two ways in which memory chips can be
combined: in parallel to increase the data bus width
and in banks to increase the addressable memory
size. If the width (the number of bits available in par-
allel) of the individual memory devices is less than
what is required by the CPU, then memory devices
can be combined in parallel by connecting their data
bits to successive bits of the data bus. Multiple banks
of these devices can then be combined to make avail-
able more memory than can be provided by one such
set of ICs.

The following diagram shows an example of how
memory chips can be combined to increase both the
word size and the number of words available. In this
example two 1kx4 RAMSs are combined to form 1kx8



banks of memory and four such banks are combined
to form a 4kx8 memory array. The 2-to-4 decoder
selects one of four banks (using their CS inputs) ac-
cording to the value of the 2 most significant address
bits.

CS3  pank cs2 cs1 cso
—
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Exercise 69: Eight (8) 1Mx4 devices are to be connected to a
CPU with a 16-bit data bus. How many address and data bits
does each IC require? What is the total memory size in MBytes?
Draw a block diagram showing the address and data bus con-
nections to the different ICs. How many enables (used to drive
CS pins) will be required from the address decoder?

Address Decoding

The memory space of a computer system can be con-
sidered to be an array of 2New bytes where Ncpu is the
number of CPU address bits. The memory (and pos-
sibly 1/0O devices) exist, or “are addressed,” within
this address space.

General-purpose processors use byte addressing -
each address selects one byte. This means that not all
of the CPU address lines may be explicitly available.
For example, the 386SX processor has a 16-bit data
bus. The least-significant bit of the address, Ag is
thus not visible. Instead, it is converted into BHE*
and BLE*. This has to be taken into account in the
design of the memory system (e.g. BHE* and BLE*
are used as chip-select signals).

Typically Ncpy is larger than the N for a memory
device (the CPU can address more memory than can
be supplied by one memory chip). For example, the
8088 has Ncpy = 20 address pins but we might want
to use 32kB (N = 15) RAMs.

Combinational circuits called address decoders
are used to enable a bank of memory devices when

the address on the CPU bus lies in the desired range
of 2N addresses. The decoders’ inputs are Nepu —N
most-significant CPU bus address bits and its out-
puts are logic signals that enable the chips in one
bank when the address falls within the desired ad-
dress range. The two most common ways to imple-
ment address decoders are SSI (small scale integra-
tion) decoders and PLDs (programmable logic de-
vices).

The number of words in a bank is always a power-
of-two. Address decoders detect (decode) addresses
that start on an address that is a multiple of this
power-of-two. Therefore the address range can be
written as a bit pattern that the decoder responds to.
For example, a decoder for addresses from 2 0000H
to 2 7FFFH (N = 15, 32 kBytes) would respond to
addresses of the form 0010 OXXX XXXX XXXX XXXX
where the X’s are “don’t cares.”

Exercise 70: If a decoded region spans 4 kBytes starting at
address 1 0000H, what pattern of addresses will the memory
respond to?

Decoder designs can be simplified by allowing the
decoder to respond to multiple addresses. This is
called partial decoding. In this case the decoder
uses fewer than Ngpy — N bits. For example, if the
above decoder responded to addresses of the form
000x xXXX XXXX XXXX XXXX the decoded region
would extend from 0 0000H to 1 FFFFH (128kB)
and the 32kB region would appear replicated in all
four 32k blocks in that region. This partial decod-
ing “wastes” part of the processor’s address space
because it is now unavailable for other devices. The
advantage is that the extra “don’t-care” bits results in
a somewhat simpler implementation for the decoder.

Memory System Design

The design of a memory system involves the follow-
ing steps:

1. determine the number of chips per bank by di-
viding the width of the CPU data bus by the
width of the memory chips

2. determine the number of banks required from
the total memory required and the memory pro-
vided by each bank

3. determine which CPU address lines will drive
the memory chip address inputs and which CPU



address lines will drive the bank-select decoder.
This will be affected by the data bus size and
whether full or partial decoding is used

SSI Decoders

A decoder such as the 74L.S138 3-t0-8 decoder can
be used to divide up an address range.

Exercise 71: How would you connect a '138 to divide up the
8088'’s 20-bit (1 MByte) address space into eight 128-kByte re-

gions?

PLD Decoders

Since PLDs can generate complex combinational
functions they can be used to divide up a memory
space into regions of different sizes.

Exercise 72: We want to design a PAL (a type of PLD) decoder
that selects one 64kB region from 0 0000H to 0 FFFFH and one
256 kB region from C 0000 to F FFFFH out of the 8088's address
space. How may input bits are required? How many outputs?
Write the VHDL expressions for signals sel 1 and sel 2 assum-
ing the address bits are declared asa : in bit_vector (19

downto 0) ;.

Memory Technologies

A wide variety of IC memory devices are available.
They vary in terms of data permanence, power con-
sumption, cost, capacity, and access time.

SRAM

Static Random-Access Memory. This is volatile
read/write memory. Data is stored as the state of a
flip-flop. The contents are lost when power is re-
moved. CMOS devices have very low power con-
sumption when not being accessed and can be used
with battery or capacitor backup. Bipolar devices
have higher power consumption but feature the short-
est access times.

DRAM

Dynamic RAM. In dynamic RAM the data is stored
as the charge on a capacitor. These devices have the
lowest cost per bit for RAM. The contents are lost

if memory locations are not accessed (refreshed) ev-
ery few milliseconds. Capacity about 4 times that of
same-generation SRAM.

M ask-Programmed ROM

Programmable Read-Only Memory. Non-volatile
read-only memory. Data is stored as connections be-
tween gates. The memory contents are determined
at time of manufacture. Lowest cost per bit of any
memory but have large NRE (“non-returnable engi-
neering™) costs which makes them suitable only for
large volume applications.

EPROM

Erasable Programmable Read-Only Memory. Field-
programmable non-volatile ROM that can be erased
by exposure to UV light. Data stored as charge on
“floating gates.” Typically have byte-wide organiza-
tion. Not as fast or dense as RAM. OTP (one-time
programmable) devices are less expensive since the
packages don’t have windows (and can’t be erased).

EEPROM and Flash

Electrically-Erasable PROM. Non-volatile memory
that can be written like RAMSs. Write cycles are rel-
atively long (hundreds of microseconds). Relatively
small capacity. Limited to several thousand write cy-
cles. Mostly used to store infrequently-changed con-
figuration information.

Flash EEPROMs are similar to EEPROMs but
whole sections of the chip must be erased and then
re-written. This simplifies the design of each cell.
This reduces cost and increases capacity.

Specialized Memories

Video RAM is sometimes used in video display cir-
cuits. They have a second independent data output
used that sequentially reads out a complete row of
data from the memory array. This “dual ported” ar-
rangement allows both the CPU and the video signal
generator to access the RAM at the same time. This
reduces contention and improves performance.
Serial EEPROMs are EEPROMSs whose contents
must be read or written one bit at a time from start to



end. The serial interface reduces chip size, pin count
and cost (e.g. a 128x8 EEPROM in an 8-pin DIP
for $1). Typical application is storing configuration
information. The slow serial access is not a drawback
since the device is typically accessed only when the
product is turned on (or off).

Exercise 73: What type of memory device(s) would likely be
used in a popular PC for the following purposes: storage for the
power-on boot code? the “CMOS” configuration memory? the
main data/program RAM? the main memory cache? the boot
program in a prototype of this PC? the video display memory?

What type of memory device(s) would likely be used for the
following applications: non-volatile memory for user programs in
a calculator? a font card for a laser printer? user-upgradeable
storage for the firmware in modem? the mileage reading in a
digital car odometer? a video game cartridge?

Timing Specifications

A chip’s timing specifications are of two types: (1)
timing requirements and (2) guaranteed responses.
All timing specifications are measured between tran-
sitions from low to high (rising edge) or high to low
(falling edge) — of a chip’s inputs and outputs.

Guaranteed responses are delays between an edge
on an input (or output) signal and the transition to the
correct level on an output signal. A chip’s manufac-
turer guarantees that this specification will always be
true if the chip is operated within it’s recommended
limits. A typical guaranteed response is a propaga-
tion delay.

Timing requirements are the time relationships be-
tween a transition on an output (or input) signal and
the transition to the correct level on an input signal.
A chip’s manufacturer guarantee the correct logical
operation of the chip if all of the requirements are
met. Typical examples of timing requirements are
setup and hold times.

A simple rule to distinguish between these two is:
Timing requirements are measured to an edge on an
input signal while and guaranteed responses are mea-
sured to an edge on an output signal.

The diagram below shows the simplest examples
of the two types of circuits: a logic gate (an exam-
ple of a combinational circuit) and a D flip-flop (an
example of a sequential circuit):

gate

data data
in out

]

clock
and the diagram below shows the three most com-
mon timing specifications:

propagation delay

data in / \
||

data out L/ \

data in X | X
I |
clock \ "
]
setup hold
time time

The most common guaranteed response is the
propagation delay which is the maximum delay be-
tween a change in the input and the correct value ap-
pearing at the output. A similar guaranteed response
during a memory device read cycle is the accesstime.
This is typically measured from the address, chip-
select, or output-enable signals changing to when the
data outputs become valid.

The most common timing requirements are the
setup time and hold time which are the minimum du-
rations that the data input to a flip-flop has to be at
the desired value before and after the relevant clock
edge. Setup and hold times also apply to memory
device write cycles. These are typically measured
between the address, data, or control signals chang-
ing to the edge of the write strobe that ends the write
cycle.

Exercise 74: Which of the three basic specifications (delay,
setup and hold times) would apply to a multiplexer? To a RAM

chip? To a ROM?

Exercise 75: Draw timing diagrams for a ROM read cycle show-
ing the address, CS*, OE8, and data signals and for a RAM write
cycle showing the address, CS*, OE*, WR*, and data signals.
Label the guaranteed responses and timing requirements.
During read cycles the data output by a memory
device is loaded into a CPU register. Thus the CPU



read cycle timing specifications usually include re-
quirements similar to setup and hold times. Simi-
larly, during write cycles the data output by the CPU
is loaded into a memory device. Thus CPU write cy-
cle timing specifications usually include guaranteed
responses similar to propagation delays. Often the
CPU manufacturer will quote timing requirements
relative to clock edges rather than to read or write
strobe edges.

In addition to the three fundamental specifica-
tions many chips may either require or guarantee a
minimum/maximum pulse widths on certain signals
and/or minimum/maximum cycle times (waveform
period) or frequencies.

Timing Diagram Conventions

Timing diagrams help to clarify the meanings of tim-
ing specifications by labeling the times between sig-
nal transitions (“edges”) using symbols from tables
of timing specifications.

Some conventions used in timing diagrams are:

e high and low levels shown at the same time in-
dicate the signal is not changing but can have
either value (e.g. a data signal)

e shading between two levels indicates that the
value is allowed to change during this time

e a line half-way between the two logic levels
indicates that the signal is in high-impedance
(“tri-state™) state

e arrows drawn between transitions on different
signals show that one signal transition causes or
affects another

e sloped transitions between levels allow refer-
ences to the signal reaching a low (VoL/M\) or
high (Von/My) value

It is important to understand that timing diagrams
are not drawn to scale. This allows chips with differ-
ent specifications to share the same timing diagram,
allows small delays to be shown more clearly and
also allows the same label on the diagram to refer
to both maximum and minimum values. You can’t
even rely on the timing diagram to show the order in
which signal transitions will happen.

Timing Analysis

Timing analysis should be part of every digital sys-
tem design. After a preliminary circuit design the
designer must verify that all timing requirements for
all devices will be met. It is not sufficient to build
a prototype and demonstrate that it works properly
since the actual timing characteristics will vary from
chip to chip and as a function of temperature and sup-
ply voltage. If a timing analysis is not done before a
design is put into production the consequences could
be serious.

A timing analysis is most conveniently summa-
rized in the form of a table. The first step in a timing
analysis is to consult the data sheets for all of the
devices in the circuit and prepare one table for each
chip and for each possible type of cycle (read, write,
etc). Each line in each table should list one timing
requirement and it’s minimum or maximum value.

Next, draw timing diagrams that show the wave-
forms of the relevant signals with labels indicating
the timing specifications. This may include signals
generated by clocks, by the microprocessor, by mem-
ories and by interface circuits such as address de-
coders and buffers. Often there will be several tim-
ing diagrams for different parts of the circuit or for
different sequences of signals (e.g. different bus cy-
cles). The timing diagrams are then used to obtain
expressions for each timing requirement in terms of
the guaranteed timing responses of the other devices
and, usually, clock periods.

The expressions are derived by expressing each re-
quirement in terms of variables representing clock
periods and other chips’ guaranteed responses.
These expressions are then entered into the table.

When values are substituted for the variables in the
equations, a minimum (or possibly maximum) value
is obtained for that requirement in that specific cir-
cuit. The difference between the computed require-
ment and the manufacturer’s specified requirement
is called the margin. For example, if a manufacturer
specifies that a certain flip-flop requires a 10 ns setup
time and in a particular circuit the setup time is guar-
anteed to be at least 50 ns then the margin is 40 ns.

On the other hand, if any of the margins are nega-
tive then the chip’s timing requirements are not met
and the design must be changed. Typical changes
include:



adding CPU wait states

reducing the clock frequency

registering signals to extend them

using redundant logic gates to add small delays
(poor practice)

Heres’ an example of part of the timing analysis
for a RAM chip:

XYZ124-10 RAM write cycle

requirement guaranteed
name symbol | value || expression vaue | margin
setup time tgy 10 =tck —tpD 100-5
=95 =85

The first three columns are copied from the chip’s
spec sheet. The expression is obtained from inspec-
tion of the timing diagram. The value of the expres-
sion and the margin are computed.

Example

As a simple but complete example, consider a sim-
ple state machine where a combinational circuit com-
putes the next state based on the current state and the
input:

=— input

|

comb.

E logic
D Q
CLK J

Draw separate timing diagrams for the flip-flop

Exercise 76:
and the combinational circuit. Assume the flip-flops require a
minimum setup time, ts, of 20ns and a minimum hold time, t,, of 0
ns. Assume the maximum clock-to-output propagation delay for
the flip-flop is tco = 5 ns (again, with no minimum). Assume that
the maximum propagation delay through the combinational logic
circuit is guaranteed to be a maximum of tpp = 20 ns, and there
is no minimum for tpp. Label the timing diagrams with each of
these specifications.

Exercise 77: Draw a timing diagram for the complete circuit.
It should include the clock CLK, the flip-flop’s output, Q, and its
input, D. Indicate cause—effect relationships between the signal
edges using arrows.

Derive expressions for each timing requirement in terms of
the clock period and guaranteed timing specifications for a clock
frequency of 10 MHz. Substitute the actual values and compute
the remaining margin. Will this circuit operate properly as far as
timing is concerned? What if the hold time requirement was 5

ns?

Dynamic RAM

DRAM Structure

A description of the structure of a DRAM helps ex-
plain some of their unique features.

A typical DRAM memory is laid out as a square
array of memory cells with an equal number of rows
and columns. Each memory cell stores one bit. The
bits are addressed by using half of the bits (the most
significant half) to select a row (the row address) and
the other half to select a column (the column ad-
dress).

Exercise 78: How many rows and columns would there be in
the memory cell array in a 16 M by 1 (16 Mbit) DRAM?

Address Multiplexing

In order to reduce the number of pins on the DRAM
chip and thus reduce the size of the DRAM chip,
most DRAM chips multiplex the row and column ad-
dresses onto the same set of pins.

Two strobes, RAS* (row address strobe) and
CAS* (column address strobe) tell the chip which
half of the address (row or column) is currently on
the address pins. To further reduce the chip count
the CAS™* signal typically acts as an output enable
when R/W* line is high (read) and the falling edge
acts as a write strobe when R/W* is low (write).

A+>

RAS* —=

<=— Din

DRAM

CAS*—= —= Dout

WR*—=

Exercise 79: How many address pins would be found on a

typical 16 M x 1 DRAM?

DRAM Access and Refresh

To maximize the capacity of the DRAM, each mem-
ory cell is very simple — it consists of a capacitor and



a FET switch. A DRAM memory cell is therefore
much smaller than an SRAM cell which requires two
inverters and two transmission gates.

The following diagram shows the structure of
DRAM array using switches in place of transistors:

column
lines

row lines

The row address drives a decoder which enables
the appropriate row-select signal. This row-select
line turns on all of the FET switches in that row and
connects each the capacitors in the selected row to its
column line. Note that each vertical column line is
shared by all the memory cells in a column although
only one capacitor is connected to the column at any
time.

The charge stored in each memory cell capacitor is
relatively small so each column line is connected to a
“sense amplifier” which amplifies the voltage present
on the line while RAS* is asserted.

When CAS* is asserted the output of the sense
amplifiers is driven back onto the column lines and
recharges the capacitors. Thus each memory access
refreshes the contents of that row.

The column address also drives a multiplexer
which selects one of the column lines and connects
it to the output, thus reading out the value of a single
bit. During a write, the value on the input over-rides
the sense amplifier value for the addressed column
and this stores new data into the desired memory cell.

memory
cell
array

(2Ncells)

o}
k<]
<1
o
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M.S. N/2 address bits

sense amplifiers

column multiplexer

L.S. N/2 address bits

Din Dout

DRAM Timing

In addition to the DRAM timing requirements of
setup and hold times for the row and column ad-
dresses, DRAMSs also require a minimum “pre-
charge” time between the end of RAS* or CAS* and
the start of the next cycle. This “recovery” time is
needed to re-charge the storage capacitors. This pre-
charge time extends the minimum cycle duration to
considerably more than the access time. For exam-
ple, a DRAM with a 60 ns access time may have a
minimum cycle time of 100 ns.

Figure 1 shows timing diagrams and specifications
for a typical DRAM. The sequence of operations re-
quired to read or write from a DRAM both start in
the same way:

e set R/W* to the appropriate value and place the
row address (the MS half of the address) on the
address pins,

e wait the RAS* setup time, bring RAS* low, and
wait for the RAS* hold time

In order to read from the DRAM:

e place the column address on the address pins,
wait the CAS™* setup time, bring CAS* low, and
wait for the CAS™ hold time

o wait until the access times from both CAS* and
RAS* are met and then read the data from the
data out pin

In order to write to a DRAM the sequence is simi-
lar except that during a write cycle the data is latched
on the falling edge of CAS*:

e place the column address on the address pins,
data on the data input pin, wait for the CAS*
and data setup times, bring CAS* low, wait for
the CAS* and data hold times.

At the end of either cycle we must then bring
RAS* and CAS* high and wait the pre-charge (re-
covery) time before starting another cycle.

Exercise 80: Draw a timing diagram for a DRAM read cycle
showing the address lines, RAS*, CAS*, WR* and the data pins.
Show on the timing diagram the following specifications: address

setup and hold times from RAS* and CAS* active, access times
from RAS* and CAS* active, minimum “pre-charge” times (from



RAS* or CAS* inactive), and the minimum cycle time (from RAS*
to RAS¥).

For a write cycle, show the setup and hold times for Djp, from
CAS* active.

Refresh

Since the DRAM storage capacitor discharges over
time it must be refreshed periodically. The DRAM’s
structure ensures that all the memory cells in a row
are refreshed every time that row is read. Therefore
it is only necessary to periodically cycle through all
of the row addresses to refresh all of the bits in the
memory array.

The simplest technique to provide DRAM refresh
is to include a device (such as a DMA controller or
video display circuit) that accesses the RAM in such
a way that all of the rows are accessed at least once
during the minimum refresh time (typically every
few tens of milliseconds). This is called RAS*-only
refresh because it’s not necessary to assert CAS* in
order for the refresh operation to take place.

Another technique is to add a circuit that periodi-
cally forces a cycle in which CAS* is asserted before
RAS*. This is called CAS* before RAS* (CBR) re-
fresh. Modern DRAMSs have an an internal refresh
counter that cycles through the possible row values.
On these DRAMSs the CAS* before RAS* operation
causes an internal row-refresh operation. The advan-
tage of this type of refresh is that the refresh con-
troller need only control RAS* and CAS*, it need
not generate the refresh row addresses.

Exercise 81: Assume a microprocessor with a 200 ns memory
cycle time is using a 1 MByte DRAM with a maximum refresh time
of 10 ms. How many row addresses will have to be refreshed ev-
ery 10ms? What is the approximate time between each refresh
cycle? How many memory cycles are there per refresh cycle?
What percentage of the memory accesses are “wasted” on re-
fresh cycles?

DRAM versus SRAM

Since the SRAM devices require more circuitry per
memory element they are more expensive (per bit) to
produce and have lower density per chip. The typical
ratio between DRAM and SRAM for the same chip
(die) size is about 4 to 1.

The disadvantages of DRAMs are that they require
additional control circuits to multiplex address lines

and to handle refresh. If DRAMSs are organized as
bit-wide devices it is necessary to use a number of
devices that is a multiple of the the data bus width
(8, 16 or 32) in a system.

The use of large DRAM arrays in which the CPU
address and data buses must drive many chips usu-
ally requires buffers for the address and data lines.
Because of these reasons DRAMSs are mainly used in
systems that require large memories and SRAMs are
mainly used in smaller systems.

The fastest RAM designs are static, so SRAMs are
often used for high-speed memories such as cache or
address translation tables.

CMOS SRAMs consume very little power when
not being accessed so they are often used in low-
power designs. With the use of battery (or a large
capacitor) backup they can retain their contents for
months. On the other hand, since DRAMs must
be continuously refreshed, their power consumption
cannot be reduced to very low values.

Due to the larger number of bits per chip and wider
bus sizes, DRAMSs are now being offered in nybble
(4-bit) and larger organizations. The number of extra
pins required to provide the additional data bits is
less of a concern with modern high density packages
such as QFP and SOIC.

Exercise 82: Consider a system using 16 Mbit X1 memories to
design a memory array for a microprocessor system with a 32-bit
data bus. What is the minimum amount of memory that could be
provided using these devices?

EDO, FPM and SDRAM

Many DRAMS include an extended data out (EDO)
feature, in which the output data is latched and held
past the end of a read cycle and into the start of the
next cycle in order to help satisfy CPU hold times.

Due to the need to charge the DRAM capacitors,
the shortest practical cycle times are currently about
50 ns. If the CPU cycle time is less than this then
wait states must be inserted for each memory access.
This would limit the performance of processors with
cycles times less than about 50 ns.

Instead of accessing the DRAM memory directly,
these faster computers use fast SRAM memories that
record (“cache™) values as they are read from the
main memory. When the CPU accesses a value that
is already in the cache it can retrieve it much faster



than it could from DRAM.

Instead of retrieving a single value from the main
memory, cache controllers are designed to retrieve
the values from several (e.g. 4) consecutive memory
locations in a burst. Fast Page Mode (FPM) and Syn-
chronous DRAM (SDRAM) memories provide fast
access to consecutive memory locations and mini-
mize the total time required for a burst read.

Since the contents of each row are read with each
RAS* operation, it is possible to obtain the values
of more than one column within a given row without
having to re-read the row. Some DRAMSs support
such a “fast page mode” in which multiple CAS* cy-
cles may be used to access several addresses within
one row (“page”) after one RAS* cycle. These ac-
cesses within one row are much faster than accesses
to separate rows (e.g. 10 ns versus 50 ns).

It is also possible to design DRAMSs to use mul-
tiple internal memory arrays, all of which are ac-
cessed in parallel. The arrays are assigned to con-
secutive memory locations and, for the same reasons
as FPM DRAM, this allows faster access to consec-
utive memory locations.

High-speed DRAMSs use a synchronous (clocked)
interface. The cache/DRAM controller writes the de-
sired staring memory location and word count into
registers in the DRAM, waits a fixed number of clock
cycles, and then reads one word per clock cycle.

Cache Memory

L ocality of Reference

During the execution of most programs the CPU typ-
ically accesses a few memory locations very often.
Furthermore, these locations are often close together.
As an example, consider the following C function:

int strlen(char *p)

{
int len=0 ;
while (*p++ 1= 0 ) lent++ ;
return len ;

}

the variables | en and p will be accessed repeat-
edly? as will the instructions within the loop.

11n a proper system this function would be in-lined, and use
only the variable’p’ which would be stored in aregister, but the

To exploit this locality of reference we can use
small high-speed memories to temporarily store the
values of these often-used memory locations. If ac-
cess to this cache memory can be done more quickly
(i.e. with fewer wait states) than access to main
memory we can reduce the overall execution time.

The structure of a cached memaory system is shown
below:

CPU
data
address
cache cache main
controller | | memory | | controller

contro

The CPU can read from the cache memory or the
main memory and can write to the cache, main mem-
ory or both. The main complexity of a cache is de-
signing the controller because it must keep track of
which values in the cache are valid and what memory
locations they represent.

Effects of Hit Rate and Access Times

If we define k as the ratio of the time required to re-
trieve a value from cache as opposed to from mem-
ory and H as the average fraction of time a memory
reference can be obtained from the cache, we can de-
rive the speed improvement factor in memory access
time due to the use of cache to be:

B 1
 1-H(1-k)

Note that H (hit rate) must be reasonably large for
k to have an effect. Also note that k will depend
not only on the memory access time but also on the
length of the bus cycle. For example the bus cycle
on a 68000 CPU at 8 MHz is long enough that no
wait states are needed for main memory access. This
means k is 1 and there is no advantage to using cache
memory.

On the other hand consider a 50 MHz RISC pro-
cessor that has a 20 ns bus cycle when reading from
the cache and a main memory bus cycle of 100ns
(k=0.2). Assuming the cache size and program struc-
ture result in a cache hit rate of 90%, then the use of

S 1)

principle still applies anyways...
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the cache will speed up the processor by a factor of
1/(1-0.9(1-0.2)) =3.6.

Direct-Mapped Cache

The simplest type of cache memory organization
(and the only one we will study) is the direct-mapped
cache.

Both the main and cache memories are divided
into lines. A line consists of a small number of con-
tiguous bytes (e.g. 8). Lines are transferred be-
tween the cache and main memory as a complete
unit. When a cache line is updated during a main
memory read, the complete line must be updated.
For example, if we are using 8-byte lines and 32-bit-
wide memory the main memory accesses need to be
done in pairs.

A direct-mapped cache that holds 2N bytes uses
the least significant 3 bits of the address (for 8-byte
lines) to select a byte within a line, and the next least
significant N — 3 address lines to select a particular
line. For example, a 64 kB cache with 8-byte lines
would use the CPU address lines A15 to A3 to select
a particular line from the cache.

When the CPU does a memory access, the cache
control circuitry must decide whether the particular
address is stored in the cache memory. If it is, then
the CPU reads the cache, otherwise it must read the
value from main memory. At the same time as a
value is read from the main memory the appropriate
cache line is updated.

The cache controller decides whether the partic-
ular line in the cache corresponding to that address
is the desired one or not by using a lookup table
stored in a “tag” RAM. The value stored in each en-
try in the tag RAM corresponds the remaining most-
significant bits of the address that the line was read
from.

For example, a 64kB cache with 8-byte lines holds
8k lines. If the cache can support a main memory
size of 16 MBytes (24 bits) then the tag RAM must
store 8 bits for each line. The 24 address bits going
to the cache are divided into 3-bits to select a byte
from a line, 13 bits to select a line from the cache
and 8 bits that are compared to the tag for that line).
The 13 bit line select forms the address input to an
8Kx8 tag RAM and the 8 output bits are compared
to the 8 most significant bits of the desired (24-bit)

11

address.
8 compare
8 ——= hit/miss
tag =
CPU  |94[13 -
cache main
memory
|
32 2 32 32

i . - AO,Al

data bus

Write-Back versus Write-Through

When the CPU writes a value to memory, the cache
controller can either update both the main memory
and the cache (“write through™) or it can update just
the cache (“write-back™). Although the latter is faster
it means that we must keep track of cache lines that
have been updated in cache but not in main mem-
ory. When we get a cache miss on a line we need
to write that line back to main memory before it can
be re-read from main memory. This means that the
cache controller design is more complicated and re-
quires a 1-bit memory (called a “dirty bit” memory,
e.g. 8kx1) for each line in the cache.
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