ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS
1999/2000 WINTER SESSION, TERM 2

Interrupts

This lecture covers the use of interrupts and describes the vectored interrupt mechanism used on the IBM PC using

the Intel 8259 Programmable Interrupt Controller (PIC).

After this lecture you should be able to: (1) choose between polling and interrupts to service a peripheral and justify
your choice, (2) describe how the 8259 PIC handles multipleinterrupt sources, and (3) write an ISR in 8088 assembly

language to service interrupts generated by the 8259 PIC.
Introduction

The two commonways of servicingdevices are by

polling and by usinginterrupts. Polling meansthe
statusof the peripherals checled periodically(typi-

cally by testinga “dataregisterempty” bit in a status
register)to determinevhethelit needdo beserviced,
for examplewhetherthe device hasdatareadyto be
read.

Thealternatve is to useinterrupts a signalfrom
the peripheralconnectsto the CPU'’s interrupt re-
questinput. The peripheralinterfaceis designedo
assertthis interrupt requestsignal whenit requires
service(e.g. whenit hasdataavailable or whenit
canaccepimoredata). Theresultof assertinghein-
terruptsignalis to temporarilysuspendhecurrently-
executingprogramandto causeaninterruptservice
routine(ISR) to be executed.TheISR transferdata
to/fromtheperipheral.

In this lecturewe cover the designof interrupt-
driven /O deviceson IBM PC compatiblearchitec-
tures.

Choosing Between Polling and I nter-
rupts

I/0 devicessuchasprinters,keyboards.etc. require
thatthe CPU executesomecodeto “service” thede-
vice every oncein awhile. For example,incoming
character®r keystrokeshave to be readfrom a data
register on the peripheralinterface and storedin a
buffer sothatthe applicationcanretrieve themwhen
they areneeded.

Polling mustbe donesuficiently fastthat datais
notlost. For example,if aserialinterfacecanreceve
up to 1000characterper secondandcanonly store
thelastcharactereceved,it mustbechecledatleast

lecd. tex 1

onceper millisecondto avoid losing data. Sincewe
needto periodicallycheckeachdevice, regardlesof
whetherit requiresserviceor not, polling causesa
fixedoverheador eachinstalleddevice.

Another possiblygreater disadwantageof polling
is that polling routinesmustbe integratedinto each
andevery programthatwill usethatperipheral Pro-
gramsmustbe written to periodically poll and ser
vice all theperipheralghey use.Suchtight coupling
betweerthe applicationandthe hardwareis usually
undesirablexceptin thesimplestembeddegroces-
sorcontrolsystems.

Onthe otherhand,an ISR is only executedwhen
adevice requiresattention(e.g. a charactehasbeen
receved). Thusthereis no fixed overheador using
interrupt-drven devices. In addition,sincelSRsop-
erateasynchronouslwith theexecutionof otherpro-
gramsit is notnecessarfor applicationprogramgo
worry aboutthe detailsof thel/O devices.

However, respondingo an interrupttypically re-
quiresexecutingadditionalclock cyclesto save the
processoistate, fetch the interrupt numberand the
correspondingnterruptvector branchto thelISRand
laterrestoreghe processostate.ln addition,ISRsare
much more difficult to write and delug than other
codebecausenary typesof ISR errorswill “crash”
thesystem.

Somefactorsto considerwhendecidingwhether
to usepolling or interruptsinclude:

e Canthe device generatanterrupts? If the pe-
ripheralis very simplethenit maynothave been
designedo generatenterrupts.Verysimplemi-
crocontrolleramaynot have interrupthardvware.

¢ How comple« istheapplicationsoftware?If the
applicationis acomplex programthatwould be
difficult to modify in orderto addperiodicpolls

of thehardwarethenyou mayhave to useinter
rupts. On the otherhand,if the applicationis
a controllerthat simply monitorssomesensors
andcontrolssomeactuatorghenpolling maybe
thebestapproach.

e What is the maximumtime allowed between
polls? If the device needsto be servicedwith
very little delaythenit may not be practicalto
usepolling.

e Whatfraction of polls are expectedto resultin
datatransfer?If therateatwhich the device is
polled is much higher than the averagetrans-
fer rate then a large fraction of polls will be
“wasted”and usinginterruptswill reducethis
polling overhead.

In general,you should use interruptswhen the
overheaddueto polling would consumea large per
centagef the CPUtime or would complicatehede-
signof thesoftware.

Exercise 48: You are designing a simple furnace controller. It
uses a microcontroller to read a temperature sensor and turn a
heater on and off in response to the temperature. Would you use

interrupts for this application?

Exercise 49: You are designing the driver software for a LAN
interface card that will work in a general-purpose computer. Is
this driver likely to make use of interrupts?

Exercise 50: Data is arriving on a serial interface at 4000 char-
acters per second. If this device is serviced by polling, and each
character must be read before another one is received, what is
the maximum time allowed between polls? If each poll requires
10 microseconds to complete, what fraction of the CPU time is
always being used up even when the serial port is idle? What if
there were 8 similar devices installed in the computer?

Exercise 51: Data is being read from a tape drive interface
at 100,000 characters per second. The overhead to service an
interrupt and return control to the interrupted program is 20 mi-
croseconds. Can this device use an ISR to transfer each charac-

ter?

Alternative Approaches

It's also possibleto usea mixture of interruptand
polled devices. For example,a device canbe polled
by an ISR that executesperiodicallydueto a clock
interrupt. This removesthe needto include polling

routinesin eachapplicationwithout needingto add
interruptrequesthardwareto the peripheral.

We canalsopoll several differentdevicesfrom a
commonISR. This may actually be more efficient
thathaving eachdevice issueindependeninterrupts.

It is also commonfor devicesto buffer multiple
bytesandissuean interruptonly whenthe buffer is
full (or empty). The ISR canthentransferthe com-
pletebuffer without incurring theinterruptoverhead
for eachbyte. For example, modernPC serialin-
terfacescan storeup to 16 bytesbeforeissuingan
interrupt. This cutsdown the interruptoverheadby
upto 16.

Becauseénterruptsoccurdueto eventsoutsidethe
computers control, it is usually difficult to predict
the exact sequenceandratein which interruptswill
happen. In applicationswhereloss of datacannot
betolerated(e.g. wheresafetyis a concern)}the de-
signermustensurahatall of thedevicesservicedoy
interruptscanbe properlyservicedunderthe worst-
caseconditions. Typically this involves a sequence
of nestednterruptshappeningclosely one after an-
otherin a particularorder In someof thesesystems
it may be betterto usepolling ratherthaninterrupts
in orderto ensurecorrectworst-caséehaiour.

Exercise 52: Consider a monitoring system in a nuclear power
plant. The system is hooked up to hundreds of sensors, each
of which can indicate an error condition. It is difficult to predict
exactly how often and in what order these error conditions will
happen. Would you design the system so that alarm conditions

generated interrupts? Why or why not?

Operating Systems, Device Drivers
and | SRs

General-purposeomputers(as well as mary em-
beddedsystems)use operatingsystemsto provide
device-independentf/O. The operatingsystemcon-
vertsagenericl/O requesie.g. "write this buffer to
the standardoutput”) into the low-level | N and QUT
instructionsto control a specificpieceof hardware
(e.g.adiskdrive) andtransferdata.

lapplication|

0.S.

device
driver

data
(— interrupt request

hardware

ISR

data

The software that carriesout the device-specific
controland|l/O operationgs calleda device driver.
Typically adevicedriveris dividedinto a“slow” part
thatis calledby the operatingsystem(the “kernel”)
anda “fast” partthatis invoked by aninterrupt(i.e.
it is anISR). Thesetwo softwareroutinescommuni-
cateusingshareddatastructures.

The actualdetailsvary widely dependingon the
operatingsystemandthe hardware.

Maskable, Non-M askable and Soft-
ware I nterrupts

Like mary otherprocessorghe80386hastwo types
of interrupts: maskableand non-maskable.Mask-
ableinterrupts(asserte@ntheINTR pin) canbedis-
abledby clearingtheinterrupt-enabldlag (IF bit) in
theflagsregisterusingthe CLI instruction.

Non-maskableinterrupts (assertedon the NMI
pin) cannotbe disabled. ThusNMI is usuallyused
for very high priority eventssuchasimminentlossof
power or a hardware fault. For example,on the PC
NMI is assertedf the hardwarediscorersa memory
error

Software interruptscausethe sameinterrupt pro-
cessingasmaskableandnon-maskablénterruptsbut
they arecauseddy executingan| NT instruction.

In addition, certainerror conditions(suchas di-
vide by zero) cancauseexceptions which behae in
the sameway assoftwareinterrupts.

Interrupt Processing

A maskableinterrupt causesan interrupt acknavl-
edgecycle (similar to areadcycle) which readsa 1-
byte interrupttype from the interruptingperipheral.
Theinterrupttype (which is not the sameasthein-
terrupt“number”) is thenmultiplied by four (4) and
aninterruptvectoris fetchedfrom this address.

An NMI always usesthe interrupt vector for in-
terrupttype 2, thusallowing it skip this interruptac-
knowledgecycle andthusexecutefaster

For a softwareinterruptthe interrupttype is sup-
pliedin theinstructionandso,again,nointerruptac-
knowledgecycleis required.

The following sequencef eventshappensn re-
sponsdo aninterrupt:

1. thecurrentinstructionis completedIf alengthy
instruction,suchasa divide, is in progresghis
couldtake tensof buscycles

2. aninterruptacknavledgecycle is runt andthe
CPU readsaninterrupttype from a specialpe-
ripheral that recognizeghe interruptacknavl-
edgecycle andrespondsvith theinterrupttype

3. the CPU sares the processorcontet (flags,
IP and CS registersare pushedon the current
stack)to presere the valuesof the processor
registers(“processorcontet”) whenthe inter
rupt happened

4. the interrupt-enableflag (IF) is cleared,thus
preventingtheinterruptrequessignalfrom im-
mediatelycausinganotherinterrupt

5. aninterruptvector (the addressof the start of
the ISR) is retrieved from memoryby reading
4 bytes (offset and segment) from an address
equalto theinterrupttype multiplied by 4.

6. the CPU branchedo the addresghat was re-
trievedin the previous stepandthis begins exe-
cutionof thelSR

Thefirst two stepsareskippedin the caseof NMI
andsoftwareinterrupts.

Exercise 53: How could you invoke the NMI handler on a PC if

you had to regain control after it executed?

Exercise 54: What memory locations store the NMI interrupt
vector? The ISR for NMI is located at address EO00:0FBE (seg-
ment:offset). Draw a diagram showing the contents of each byte
of these memory locations.

Exercise 55: In “real mode” each 80x86 interrupt vector requires
4 bytes. What is the maximum number of bytes used up by an

interrupt vector table?

1For obscurereasonghe CPU actually performstwo inter-
rupt acknavledgebus cyclesseparatedy a numberof idle bus
cycles,but we will consideiit asasinglebuscycle.

The8259inthelBM PC Architecture look uptheaddres®f thelSRin theinterruptvector

table.
The80x86CPUsonly have oneinterruptrequespin.
Although simple systemsmay only have oneinter
rupt source,most systemsmusthave someway of
dealingwith multiple interrupt sources. The Intel interrupt
“way of doingthings” is to usea chip calleda pro- ;’:&ff addfress
grammablenterruptcontroller(PIC). Thischiptakes gﬁtsa —l éR
asinputsinterruptrequestsignalsfrom up to 8 pe- \ L
ripheralsand suppliesa single INTR signalto the L
CPUasshavn belaw: ??J%’L‘é‘?‘ {le E PIC Inttiggpt CPU
80x86 8259 PIC TLNT INTR
INTR INT |ro <_§
bus | INTA* IRL=~=5
control [] '~ rp* IR2 "_E_
oo bu: R Re <—§ On t.he IBM AT andlater modelsthereare more
than8 interruptsourcesandtherearetwo PICs. The
address 25* slave PIC supportsan additional 8 interruptinputs
0

andrequestaninterruptfrom themasterPIC asif it
wereaninterruptingperipherabn IR2.
ThePIChas3 purposes:

o . Exercise 56: What is the maximum number of interrupt sources
1. It allows theindividual interruptsto be enabled

or disabled/masled).

that could be handled using one master and multiple slave
PICs?

2. It prioritizesinterruptssothatif multiple inter
rupts needto be servicedat the sametime the
one with the highestpriority is servicedfirst.
Theprioritiesof theinterruptsarefixed,with in-
put IR0 having the highestpriority andIR7 the
lowest. Interruptsof a lower priority not han-
dledwhile anISR for a highetrlevel interruptis
actie.

Exercise 57: Compare this approach to that used for vectored
interrupts on typical 68000 systems. How many interrupt request
lines are there? Are they active-high or active-low? How many
interrupt sources can be connected directly to a 68000? What
if a wired-or configuration is used? What if a priority encoder
is used? What device supplies the interrupt number or interrupt
vector in a typical 68000 system?

3. It outputsthe interrupttypethatthe CPUreads
during the interrupt acknavledge cycle. This
tells the CPU which of the 8 possibleinter
ruptsoccurred.The PIC ontheIBM PCis pro- Interrupt Number and InterrUpt
grammedo respondwith aninterrupttypeof 8 Type
plus the particularinterruptsignal (e.g. if IR3
wasassertedhe CPU would readthe value 11
from the PIC during the interruptacknavledge

cycle).

A commonsourceof confusionis the differencebe-
tweentheinterruptnumberwhichis theinterruptre-
qguestpin onthe PIC thatis assertedy a peripheral
Thefollowing diagramshawvs how eachof thein- andtheir?terrupf[typewhich is thevaluereadby the
terruptrequestinesto the PIC canpotentiallycause CPU ?'““”9 the_ mterruptackntwledgecycle or sup-
aninterruptrequesto bemadeto the CPU.TheCPU pliedin an! NT instruction.
readsthe interrupttype from the PIC during thein- The interruptinputs to the PIC are connectedas
terruptacknavledgecycle andthenusesthistypeto followsonalBM PC-compatiblesystem:

4

interrupt device
number| type
0 8 | timer highest
1 9 | keyboard
2 10 | resered
3 11 | serialport2
4 12 | serialportl
5 13 | harddisk
6 14 | floppy disk
7 15 | printerl lowest

Thefollowing aresomeof theotherinterrupttypes
thatarepre-definecbn 80x86 CPUs:

interrupttype | cause
0 Divide by Zero
1 SingleStep
2 NMI
3 Breakpoint
4 Overflow
810255 implementation-dependen

Note that theseare not the sameas the interrupt
numbers.

Exercise 58: On an IBM PC-compatible system what interrupt
number is used for a floppy-disk interrupt? What interrupt type
will the CPU see for this interrupt? At what addresses will the
CPU find the interrupt vector for this interrupt?

Exercise 59: When the a key on the keyboard is pressed, which
input on the 8259 PIC will be asserted? What will the signal
level be? What value will the 80386 read from the PIC during the
interrupt acknowledge cycle?

Programming the 8259 Interrupt
Controller

The initialization of the PIC is rather complicated
becauset hasmary possibleoperatingmodes.The
PIC’s operatingmodeis normally initialized by the
BIOS whenthe systemis booted.We will only con-
siderthe standardP1C operatingmodesusedon the
IBM PC andonly a systemwith a single (master)
PIC.
In it’'s standardnodethe PIC respondgo aninter

rupt requestasfollows:

e if the PIC believes that no ISR for the same
or a higherlevel is active, the interruptrequest
(INTR) signalto the CPUis asserted

¢ if theCPU'sinterruptenableflagis setthenan
interruptacknavledgecycle will happernwhen
thecurrentinstructionterminates

e during the interrupt acknavledge cycle the
highest-priority interrupt requestis captured
andsaved (“latched”) in the PIC’s interruptre-
questregister (IRR) andthenthe interrupttype
for this interruptis readby the CPU from the
PIC. An interrupt acknavledge actually takes
two clockcycles.

The CPUusestheinterrupttypeto look up the
addres®f theISR andrunsit

e at the end of the ISR a commandbyte (20H)
must be written to the PIC register at address
20H to re-enablenterruptsat that level again.
Thisis calledthe‘EOI' (end-ofinterrupt)com-
mand.

Exercise 60: Why does the ISR have to issue an EOI instruc-
tion? How does the PIC know which ISR is terminating?

During normaloperatioronly two operationsieed
to beperformedonthePIC:

1. Disabling (masking) and enabling interrupts
from a particularsource.This is doneby read-
ing the interruptmaskregister (IMR) from lo-
cation21H,usingan AND or ORinstructionto
set/cleaiparticularinterruptmaskbits.

2. Re-enablinginterrupts for a particular level
when the ISR for that level complete. This
is done with the EOlI commandas described
above.

Masking/Enabling I nterrupts

Therearethreeplaceswhereinterruptscan be dis-
abled:(1) thePICinterruptmask,(2) the PIC priority
logic, and(3) the CPU’s interruptenableflag.

First, if the PIC interruptmaskbit is setthenthe
interruptrequestwill not be recognized.Second jf
thePIC believesanISR for ahigherlevel interruptis
still executingdueto no EOlI commancdhaving been

given for thatinterruptlevel it will not passon in-
terruptsof the sameor lower levels. Finally, if the
interruptenablebit in the CPU’s flagsregisteris not
setthentheinterruptrequessignalfrom the PIC will
beignored.

Exercise 61: How do an interrupt “mask” bit (e.g. in the PIC) and
an interrupt “enable” bit (e.g. in the CPU flags register) differ?

Notethatthe CPU’sinterruptenabldlagis cleared
whenaninterrupthappensandis restoredwhenthe
processeturnsfrom the ISR via the IRET instruc-
tion. This meanghatISRscant be interrupted(not
evenby ahigherlevel interrupt)unlessnterruptsare
explicitly re-enabledn thelSR.

Exercise 62: Can interrupts on an IBM-PC compatible computer
be nested (i.e. can an ISR be interrupted)? If so, under what

conditions? What instruction(s) are required to do this?

Exercise 63: How many levels deep can interrupts be nested
on the IBM PC if the ISR does not re-enable interrupts? If it re-
enables interrupts but does not issue EOI to the PIC? If it does
both? In each of these cases how much space would be required
on the interrupted program’s stack to hold the values pushed dur-

ing the interrupt acknowledge cycle?

Interrupt Latency

Oftena peripheralmustbe servicedwithin a certain

time limit after an event. For example,a character
mustbereadfrom aninput port beforethe next one

arrives.

Theinterruptlatency is the maximumtime taken
to respondo aninterruptrequest.This will include
the time it takesfor the currentinstructionto com-
pleteplusthetime for the CPUto respondo thein-
terrupt (e.g. save the CS, IP and flag registerson
thestack,acknavledgetheinterruptandfetchthein-
terruptvector). If an ISR is alreadyexecutingand
cannotbeinterruptedthenthis alsoincreaseshein-
terruptlateng.

Interruptroutinesshouldbe keptasshortaspossi-
ble to minimizetheinterruptlateng. Typically this
involves having the ISR storevaluesin a buffer or
setflagsandthenhaving the bulk of the processing
performedoutsidethe ISR. A typical “device driver”
consistsof an ISR that executesonly time-critical
functions such as reading/writingdata from/to the
peripherabndanothelportionthatdealswith higher
level issuessuch as moving the disk drive head,

6

checkingfor errors,etc.

Race Conditions, Critical Sections
and Deadlock

A race condition is unpredictablébehaior that de-
pendson the timing of events. Here we are con-
cernedwith raceconditionsthat arisebecausdSRs
executeasynchronouslyith respecto othercode.

Consider the following sequenceof code that
decrementghe variable count (which, for exam-
ple, could representhe numberof bytesstoredin
a buffer):

mv ax, count
------------------ > ISR runs here
sub ax, 1

mv count, ax

Considemwhatwould happenf anISRinterrupted
this codeimmediatelyafter the first nov instruction
and proceededo incrementcount . Whenthe ISR
returns, the codewill save the old value of count
(now in AX) minusoneto countandthusnullify the
incrementoperationperformedby the ISR.

Exercise 64: Assume count is initially set to 5. What is the
value of count after the ISR executes? What is the value after
the above routine ends? What would have been the value if the
ISR had executed before the first nov instruction?

A critical sectionis apartof aprogramthatshould
notbeinterruptedtypically becauseloingsowould
introducea race condition). To prevent interrupts
while this codeis executing, a CLI instructionis
placedbeforethecritical sectionandan STI instruc-
tion afterit.

Raceconditionsare introducedwheneer a data
structurecanbe modified by boththe ISR andnon-
ISR code. Accessedo suchdatamust be placedin
a critical section. An even betterapproachis to re-
designdatastructurego eliminatesuchshared-write
variables.

Deadlock happensvhentwo threadsof execution
(e.g.ISRcodeandnon-ISRcode)preventeachother
from continuing. An examplemight be an ISR that
needgo be“enabled”beforeit passeslatato a pro-
gram. If, for somereason,the programdecidesto
wait for datato becomeavailablefrom the ISR with-
outfirst enablingit, the programwill “deadlocled’

Edge- and Level-Triggered Inter-
rupts

Interruptrequessignalscanbe designedo be:

e edge-triggeredtheinterruptactsasaclockand
therising (or falling) edgeof theinterruptsignal
causesninterruptto berecorded)pr

All other registersmodified by the ISR must be
saved whenstartingthe ISR andrestoredbeforere-
turning. Otherwisethe stateof the interruptedcode
will bechangedy thelSR andthisis likely to cause
seemingly-randorfailuresin otherprograms.

Thecodebelov usessegmentoverrides: the seg-
mentregisterto be usedto form the 20-bitaddresss
explicitly givenalongwith the offset.

¢ level-triggered:theinterruptcontrollersamples

theinterruptsignalat certaintimesandrecords

aninterruptif theinputis assertedtthattime.

Onmary microprocessosystemgheinterruptre-
guestoutputsfrom multiple peripheralanbe con-
nectedin a wired-or configurationto oneactive-lov
interruptrequesinput.

However, onthe PCbothINT andIRx areactive-
high sighalsandthuscannotbedirectly connectedn
awire-or'edconfiguration.ln addition,the8259PIC
is configuredfor edge-triggeredhterruptinputs.

Exercise 65: Is it possible for several devices to share the same
PIC interrupt request line? What would happen if one device re-
quested an interrupt while another’s interrupt was still pending?

Sample 80x86/8259 | SR

The codebelonv shavs an80x86assemblyanguage
programthatincludesan ISR. The programsetsup
an ISR for interrupttype 8 (interruptnumberO, the
timer interrupt on the IBM PC). The ISR simply
decrements count. The main programwaits until
thecountreachezeroandthenterminates.
Thetimerinterruptonthe IBM PCis drivenby a
clock thatgeneratesneinterruptevery 55 millisec-
onds.With theinitial countvalueprovidedbelaw the
programwaitsfor 15 secondbeforeterminating.
Themainprogramsavesandrestoreshe previous
timer interruptvector
Whenthe ISR beggins executiononly the IP and
CSregisterswill have beeninitialized. Any other
sgmentregistersthat will be usedin the ISR must
be explicitly loaded. In this case(a DOS .comfile)
the codeand datasggmentshave the samesegment
registervaluessoDS canbeloadedfrom CS.
Onentryto thelISR only the IP, CSandflagsreg-
isterswill have beensaved onthecaller’s stack.

exanpl e of programusing an | SR for
; IBM PC timer interrupt

isrvec equ 4*(8+0) ; location of vector for IR0

; there are 4 bytes/vector and
; PIC supplies x+8 for IRx

code segment public ; .COMfile setup
assune cs: code, ds: code
org 100h
start:
mv ax, 0 ; use ExtraSegnent to access
mv es,ax ; vectors in segment 0

; save old interrupt vector

mv ax, es: [isrvec]
mv prevoff, ax

mv ax, es: [isrvec+2]
mv prevseg, ax

; set up new vector

cli ; disable interrupts unti

; vector update is conplete

mv ax, of fset isr

mov es: [isrvec], ax

mv ax, cs

mov es: [isrvec+2], ax

sti ; re-enable interrupts
; wait until ISR decrements count to zero
| oop: mv ax, count

cnp ax, 0

jnz | oop

; restore old interrupt vector

cli ; disable interrupts unti

; vector update is conplete

mv ax, prevof f ; restore prev
mv es:[isrvec],ax ; offset/segnent
mv ax, prevseg
mv es: [isrvec+2], ax
sti ; re-enable

; interrupts

; return to DOS

int

20h

; storage for demonstration program

count

dw

prevoff dw
prevseg dw

; The ISR

isr:

isrl:

t npax
t mpds

code

sub

iret

dw

dw

ends
end

273
?
?

cs: t mpax, ax ; save working registers
ax, ds
cs: tnpds, ax

ax,cs ; set up DS
ds, ax

ax, count

ax, 0 ; don't decrenent if already zero
isrl

ax, 1 ; decrenent count

count, ax

al,20h ; wite EQ command to 8259 PIC

20h,al ; to re-enable interrupts

ax, t mpds ; restore working registers
ds, ax

ax, cs: t npax

; return fromISR and
; re-enable interrupts

-~

start

Exercise 66: Why must interrupts be disabled while updating

the interrupt vector?

Exercise 67:

How will the PC's time of day change when this

program is run? What would happen if the interrupt were not

restored?

Exercise 68:

Could “the stack” be used to save the values of

the registers that will be changed in the ISR? Which stack will

be used? What are the advantages and disadvantages of doing

s0?

