
ELEC 379 : DESIGN OF DIGITAL AND M ICROCOMPUTER SYSTEMS

1999/2000 WINTER SESSION, TERM 2

Interrupts
This lecture covers the use of interrupts and describes the vectored interrupt mechanism used on the IBM PC using
the Intel 8259 Programmable Interrupt Controller (PIC).
After this lecture you should be able to: (1) choose between polling and interrupts to service a peripheral and justify
your choice, (2) describe how the 8259 PIC handles multiple interrupt sources, and (3) write an ISR in 8088 assembly
language to service interrupts generated by the 8259 PIC.

Introduction

The two commonwaysof servicingdevicesareby
polling andby using interrupts. Polling meansthe
statusof theperipheralis checkedperiodically(typi-
cally by testinga“dataregisterempty”bit in astatus
register)todeterminewhetherit needsto beserviced,
for examplewhetherthedevice hasdatareadyto be
read.

Thealternative is to useinterrupts: a signalfrom
the peripheralconnectsto the CPU’s interrupt re-
questinput. The peripheralinterfaceis designedto
assertthis interrupt requestsignal when it requires
service(e.g. when it hasdataavailable or when it
canacceptmoredata).Theresultof assertingthein-
terruptsignalis to temporarilysuspendthecurrently-
executingprogramandto causean interruptservice
routine(ISR) to beexecuted.TheISR transfersdata
to/fromtheperipheral.

In this lecturewe cover the designof interrupt-
driven I/O deviceson IBM PC compatiblearchitec-
tures.

Choosing Between Polling and Inter-
rupts

I/O devicessuchasprinters,keyboards,etc. require
thattheCPUexecutesomecodeto “service” thede-
vice every oncein a while. For example,incoming
charactersor keystrokeshave to bereadfrom a data
register on the peripheralinterfaceand storedin a
buffer sothattheapplicationcanretrieve themwhen
they areneeded.

Polling mustbe donesufficiently fast that datais
not lost. For example,if aserialinterfacecanreceive
up to 1000characterspersecondandcanonly store
thelastcharacterreceived,it mustbecheckedatleast

oncepermillisecondto avoid losingdata.Sincewe
needto periodicallycheckeachdevice, regardlessof
whetherit requiresserviceor not, polling causesa
fixedoverheadfor eachinstalleddevice.

Another, possiblygreater, disadvantageof polling
is that polling routinesmustbe integratedinto each
andevery programthatwill usethatperipheral.Pro-
gramsmustbe written to periodicallypoll andser-
viceall theperipheralsthey use.Suchtight coupling
betweentheapplicationandthehardwareis usually
undesirableexceptin thesimplestembeddedproces-
sorcontrolsystems.

On theotherhand,an ISR is only executedwhen
adevice requiresattention(e.g.a characterhasbeen
received). Thusthereis no fixedoverheadfor using
interrupt-driven devices. In addition,sinceISRsop-
erateasynchronouslywith theexecutionof otherpro-
grams,it is notnecessaryfor applicationprogramsto
worry aboutthedetailsof theI/O devices.

However, respondingto an interrupttypically re-
quiresexecutingadditionalclock cyclesto save the
processorstate,fetch the interrupt numberand the
correspondinginterruptvector, branchto theISRand
laterrestoretheprocessorstate.In addition,ISRsare
much more difficult to write and debug than other
codebecausemany typesof ISR errorswill “crash”
thesystem.

Somefactorsto considerwhendecidingwhether
to usepolling or interruptsinclude:

� Can the device generateinterrupts? If the pe-
ripheralis verysimplethenit maynothavebeen
designedtogenerateinterrupts.Verysimplemi-
crocontrollersmaynothave interrupthardware.

� How complex is theapplicationsoftware?If the
applicationis acomplex programthatwouldbe
difficult to modify in orderto addperiodicpolls

lec4.tex 1

of thehardwarethenyoumayhave to useinter-
rupts. On the otherhand,if the applicationis
a controllerthat simply monitorssomesensors
andcontrolssomeactuatorsthenpollingmaybe
thebestapproach.

� What is the maximum time allowed between
polls? If the device needsto be servicedwith
very little delaythenit maynot be practicalto
usepolling.

� What fractionof polls areexpectedto result in
datatransfer?If the rateat which thedevice is
polled is much higher than the averagetrans-
fer rate then a large fraction of polls will be
“wasted”and using interruptswill reducethis
polling overhead.

In general,you should use interruptswhen the
overheaddueto polling would consumea largeper-
centageof theCPUtimeor wouldcomplicatethede-
signof thesoftware.

Exercise 48: You are designing a simple furnace controller. It

uses a microcontroller to read a temperature sensor and turn a

heater on and off in response to the temperature. Would you use

interrupts for this application?

Exercise 49: You are designing the driver software for a LAN

interface card that will work in a general-purpose computer. Is

this driver likely to make use of interrupts?

Exercise 50: Data is arriving on a serial interface at 4000 char-

acters per second. If this device is serviced by polling, and each

character must be read before another one is received, what is

the maximum time allowed between polls? If each poll requires

10 microseconds to complete, what fraction of the CPU time is

always being used up even when the serial port is idle? What if

there were 8 similar devices installed in the computer?

Exercise 51: Data is being read from a tape drive interface

at 100,000 characters per second. The overhead to service an

interrupt and return control to the interrupted program is 20 mi-

croseconds. Can this device use an ISR to transfer each charac-

ter?

Alternative Approaches

It’s also possibleto usea mixture of interrupt and
polleddevices. For example,a device canbepolled
by an ISR that executesperiodicallydueto a clock
interrupt. This removesthe needto includepolling

routinesin eachapplicationwithout needingto add
interruptrequesthardwareto theperipheral.

We canalsopoll several differentdevicesfrom a
commonISR. This may actually be more efficient
thathaving eachdevice issueindependentinterrupts.

It is also commonfor devices to buffer multiple
bytesandissuean interruptonly whenthe buffer is
full (or empty). The ISR canthentransferthecom-
pletebuffer without incurringtheinterruptoverhead
for eachbyte. For example,modernPC serial in-
terfacescan storeup to 16 bytesbeforeissuingan
interrupt. This cutsdown the interruptoverheadby
up to 16.

Becauseinterruptsoccurdueto eventsoutsidethe
computer’s control, it is usually difficult to predict
theexact sequenceandratein which interruptswill
happen. In applicationswhereloss of datacannot
betolerated(e.g. wheresafetyis a concern)thede-
signermustensurethatall of thedevicesservicedby
interruptscanbeproperlyservicedundertheworst-
caseconditions. Typically this involves a sequence
of nestedinterruptshappeningcloselyoneafter an-
otherin a particularorder. In someof thesesystems
it maybebetterto usepolling ratherthaninterrupts
in orderto ensurecorrectworst-casebehaviour.

Exercise 52: Consider a monitoring system in a nuclear power

plant. The system is hooked up to hundreds of sensors, each

of which can indicate an error condition. It is difficult to predict

exactly how often and in what order these error conditions will

happen. Would you design the system so that alarm conditions

generated interrupts? Why or why not?

Operating Systems, Device Drivers
and ISRs

General-purposecomputers(as well as many em-
beddedsystems)use operatingsystemsto provide
device-independentI/O. The operatingsystemcon-
vertsa genericI/O request(e.g. ”write this buffer to
the standardoutput”) into the low-level IN andOUT
instructionsto control a specificpieceof hardware
(e.g.adisk drive) andtransferdata.

2

O.S.

device�
driver�

ISR
�

hardware�

data

data

interrupt request

application�

The software that carriesout the device-specific
control andI/O operationsis calleda device driver.
Typically adevicedriver is dividedinto a“slow” part
that is calledby theoperatingsystem(the“kernel”)
anda “f ast” part that is invoked by an interrupt(i.e.
it is anISR).Thesetwo softwareroutinescommuni-
cateusingshareddatastructures.

The actualdetailsvary widely dependingon the
operatingsystemandthehardware.

Maskable, Non-Maskable and Soft-
ware Interrupts

Likemany otherprocessors,the80386hastwo types
of interrupts: maskableand non-maskable.Mask-
ableinterrupts(assertedontheINTR pin) canbedis-
abledby clearingtheinterrupt-enableflag (IF bit) in
theflagsregisterusingtheCLI instruction.

Non-maskableinterrupts (assertedon the NMI
pin) cannotbe disabled.ThusNMI is usuallyused
for veryhighpriority eventssuchasimminentlossof
power or a hardwarefault. For example,on thePC
NMI is assertedif thehardwarediscoversa memory
error.

Softwareinterruptscausethe sameinterruptpro-
cessingasmaskableandnon-maskableinterruptsbut
they arecausedby executinganINT instruction.

In addition, certainerror conditions(suchas di-
vide by zero)cancauseexceptions which behave in
thesameway assoftwareinterrupts.

Interrupt Processing

A maskableinterrupt causesan interrupt acknowl-
edgecycle (similar to a readcycle) which readsa 1-
byte interrupttype from the interruptingperipheral.
The interrupttype (which is not thesameasthe in-
terrupt“number”) is thenmultiplied by four (4) and
aninterruptvectoris fetchedfrom thisaddress.

An NMI alwaysusesthe interrupt vector for in-
terrupttype2, thusallowing it skip this interruptac-
knowledgecycleandthusexecutefaster.

For a softwareinterruptthe interrupttype is sup-
plied in theinstructionandso,again,nointerruptac-
knowledgecycle is required.

The following sequenceof eventshappensin re-
sponseto aninterrupt:

1. thecurrentinstructionis completed.If alengthy
instruction,suchasa divide, is in progressthis
couldtake tensof buscycles

2. an interruptacknowledgecycle is run1 andthe
CPUreadsan interrupttype from a specialpe-
ripheral that recognizesthe interruptacknowl-
edgecycleandrespondswith theinterrupttype

3. the CPU saves the processorcontext (flags,
IP and CS registersarepushedon the current
stack) to preserve the valuesof the processor
registers(“processorcontext”) when the inter-
rupt happened

4. the interrupt-enableflag (IF) is cleared,thus
preventingtheinterruptrequestsignalfrom im-
mediatelycausinganotherinterrupt

5. an interrupt vector (the addressof the start of
the ISR) is retrieved from memoryby reading
4 bytes (offset and segment) from an address
equalto theinterrupttypemultiplied by 4.

6. the CPU branchesto the addressthat was re-
trievedin thepreviousstepandthis beginsexe-
cutionof theISR

Thefirst two stepsareskippedin thecaseof NMI
andsoftwareinterrupts.

Exercise 53: How could you invoke the NMI handler on a PC if

you had to regain control after it executed?

Exercise 54: What memory locations store the NMI interrupt

vector? The ISR for NMI is located at address E000:0FBE (seg-

ment:offset). Draw a diagram showing the contents of each byte

of these memory locations.

Exercise 55: In “real mode” each 80x86 interrupt vector requires

4 bytes. What is the maximum number of bytes used up by an

interrupt vector table?

1For obscurereasonsthe CPU actuallyperformstwo inter-
rupt acknowledgebuscyclesseparatedby a numberof idle bus
cycles,but we will considerit asa singlebuscycle.

3

The 8259 in the IBM PC Architecture

The
�

80x86CPUsonly haveoneinterruptrequestpin.
Although simplesystemsmay only have one inter-
rupt source,most systemsmust have someway of
dealingwith multiple interrupt sources. The Intel
“way of doing things” is to usea chip calleda pro-
grammableinterruptcontroller(PIC).Thischiptakes
as inputs interrupt requestsignalsfrom up to 8 pe-
ripheralsand suppliesa single INTR signal to the
CPUasshown below:

INTR

bus
control

address
A

�
0

INT

INTA*
RD*
WR*

decoder� CS*

data bus�

IR0
IR1
IR2

IR7

8259 PIC	80x86

fr
om

 p
er

ip
he

ra
ls

ThePIChas3 purposes:

1. It allows theindividual interruptsto beenabled
or disabled(masked).

2. It prioritizesinterruptsso that if multiple inter-
ruptsneedto be servicedat the sametime the
one with the highestpriority is servicedfirst.
Theprioritiesof theinterruptsarefixed,with in-
put IR0 having thehighestpriority andIR7 the
lowest. Interruptsof a lower priority not han-
dledwhile anISR for a higher-level interruptis
active.

3. It outputsthe interrupttypethat theCPUreads
during the interrupt acknowledgecycle. This
tells the CPU which of the 8 possibleinter-
ruptsoccurred.ThePIC on theIBM PCis pro-
grammedto respondwith aninterrupttypeof 8
plus the particularinterruptsignal(e.g. if IR3
wasassertedtheCPU would readthe value11
from thePIC during the interruptacknowledge
cycle).

Thefollowing diagramshows how eachof thein-
terruptrequestlinesto thePIC canpotentiallycause
aninterruptrequestto bemadeto theCPU.TheCPU
readsthe interrupttype from the PIC during the in-
terruptacknowledgecycle andthenusesthis typeto

look up theaddressof theISRin theinterruptvector
table.

interrupt
number

interrupt
 type

interrupt
vector
table

address
 of
 ISR

CPU

data
bus

IRx

INTR

PIC

INT

On the IBM AT andlater modelstherearemore
than8 interruptsourcesandtherearetwo PICs.The
slave PIC supportsan additional8 interrupt inputs
andrequestsaninterruptfrom themasterPICasif it
wereaninterruptingperipheralon IR2.

Exercise 56: What is the maximum number of interrupt sources

that could be handled using one master and multiple slave

PICs?

Exercise 57: Compare this approach to that used for vectored

interrupts on typical 68000 systems. How many interrupt request

lines are there? Are they active-high or active-low? How many

interrupt sources can be connected directly to a 68000? What

if a wired-or configuration is used? What if a priority encoder

is used? What device supplies the interrupt number or interrupt

vector in a typical 68000 system?

Interrupt Number and Interrupt
Type

A commonsourceof confusionis thedifferencebe-
tweentheinterruptnumber, which is theinterruptre-
questpin on thePIC that is assertedby a peripheral
andtheinterrupttypewhich is thevaluereadby the
CPUduringtheinterruptacknowledgecycle or sup-
plied in anINT instruction.

The interrupt inputs to the PIC areconnectedas
follows ona IBM PC-compatiblesystem:

4

interrupt device
number type

0 8 timer highest
1 9 keyboard
2 10 reserved
3 11 serialport 2
4 12 serialport 1
5 13 harddisk
6 14 floppy disk
7 15 printer1 lowest

Thefollowing aresomeof theotherinterrupttypes
thatarepre-definedon80x86CPUs:

interrupttype cause
0 Divideby Zero
1 SingleStep
2 NMI
3 Breakpoint
4 Overflow

8 to 255 implementation-dependent

Note that thesearenot the sameas the interrupt
numbers.

Exercise 58: On an IBM PC-compatible system what interrupt

number is used for a floppy-disk interrupt? What interrupt type

will the CPU see for this interrupt? At what addresses will the

CPU find the interrupt vector for this interrupt?

Exercise 59: When the a key on the keyboard is pressed, which

input on the 8259 PIC will be asserted? What will the signal

level be? What value will the 80386 read from the PIC during the

interrupt acknowledge cycle?

Programming the 8259 Interrupt
Controller

The initialization of the PIC is rathercomplicated
becauseit hasmany possibleoperatingmodes.The
PIC’s operatingmodeis normally initialized by the
BIOS whenthesystemis booted.We will only con-
siderthestandardPIC operatingmodesusedon the
IBM PC and only a systemwith a single (master)
PIC.

In it’s standardmodethePICrespondsto aninter-
rupt requestasfollows:

� if the PIC believes that no ISR for the same
or a higherlevel is active, the interruptrequest
(INTR) signalto theCPUis asserted

� if theCPU’s interruptenableflag is setthenan
interruptacknowledgecycle will happenwhen
thecurrentinstructionterminates

� during the interrupt acknowledge cycle the
highest-priority interrupt request is captured
andsaved (“latched”) in thePIC’s interruptre-
questregister(IRR) andthenthe interrupttype
for this interrupt is readby the CPU from the
PIC. An interrupt acknowledge actually takes
two clockcycles.

TheCPUusesthe interrupttype to look up the
addressof theISRandrunsit

� at the end of the ISR a commandbyte (20H)
must be written to the PIC register at address
20H to re-enableinterruptsat that level again.
This is calledthe‘EOI’ (end-ofinterrupt)com-
mand.

Exercise 60: Why does the ISR have to issue an EOI instruc-

tion? How does the PIC know which ISR is terminating?

Duringnormaloperationonly two operationsneed
to beperformedon thePIC:

1. Disabling (masking) and enabling interrupts
from a particularsource.This is doneby read-
ing the interruptmaskregister (IMR) from lo-
cation21H,usinganAND or OR instructionto
set/clearparticularinterruptmaskbits.

2. Re-enablinginterrupts for a particular level
when the ISR for that level complete. This
is done with the EOI commandas described
above.

Masking/Enabling Interrupts

Thereare threeplaceswhereinterruptscanbe dis-
abled:(1) thePICinterruptmask,(2) thePICpriority
logic, and(3) theCPU’s interruptenableflag.

First, if the PIC interruptmaskbit is setthenthe
interruptrequestwill not be recognized.Second,if
thePICbelievesanISRfor ahigherlevel interruptis
still executingdueto no EOI commandhaving been

5

given for that interrupt level it will not passon in-
terruptsof the sameor lower levels. Finally, if the
interrupt

�
enablebit in theCPU’s flagsregisteris not

setthentheinterruptrequestsignalfrom thePICwill
beignored.

Exercise 61: How do an interrupt “mask” bit (e.g. in the PIC) and

an interrupt “enable” bit (e.g. in the CPU flags register) differ?

NotethattheCPU’sinterruptenableflagis cleared
whenan interrupthappensandis restoredwhenthe
processreturnsfrom the ISR via the IRET instruc-
tion. This meansthat ISRscan’t be interrupted(not
evenby ahigher-level interrupt)unlessinterruptsare
explicitly re-enabledin theISR.

Exercise 62: Can interrupts on an IBM-PC compatible computer

be nested (i.e. can an ISR be interrupted)? If so, under what

conditions? What instruction(s) are required to do this?

Exercise 63: How many levels deep can interrupts be nested

on the IBM PC if the ISR does not re-enable interrupts? If it re-

enables interrupts but does not issue EOI to the PIC? If it does

both? In each of these cases how much space would be required

on the interrupted program’s stack to hold the values pushed dur-

ing the interrupt acknowledge cycle?

Interrupt Latency

Oftena peripheralmustbeservicedwithin a certain
time limit after an event. For example,a character
mustbereadfrom an input port beforethenext one
arrives.

The interrupt latency is the maximumtime taken
to respondto an interruptrequest.This will include
the time it takes for the currentinstructionto com-
pleteplusthetime for theCPUto respondto thein-
terrupt (e.g. save the CS, IP and flag registerson
thestack,acknowledgetheinterruptandfetchthein-
terrupt vector). If an ISR is alreadyexecutingand
cannotbeinterruptedthenthis alsoincreasesthein-
terruptlatency.

Interruptroutinesshouldbekeptasshortaspossi-
ble to minimize the interruptlatency. Typically this
involves having the ISR storevaluesin a buffer or
setflagsandthenhaving the bulk of the processing
performedoutsidetheISR.A typical “devicedriver”
consistsof an ISR that executesonly time-critical
functions such as reading/writingdata from/to the
peripheralandanotherportionthatdealswith higher-
level issuessuch as moving the disk drive head,

checkingfor errors,etc.

Race Conditions, Critical Sections
and Deadlock

A race condition is unpredictablebehavior that de-
pendson the timing of events. Here we are con-
cernedwith raceconditionsthat arisebecauseISRs
executeasynchronouslywith respectto othercode.

Consider the following sequenceof code that
decrementsthe variable count (which, for exam-
ple, could representthe numberof bytesstoredin
abuffer):

mov ax,count
------------------> ISR runs here
sub ax,1
mov count,ax

Considerwhatwouldhappenif anISRinterrupted
this codeimmediatelyafter the first mov instruction
andproceededto incrementcount. When the ISR
returns,the code will save the old value of count
(now in AX) minusoneto countandthusnullify the
incrementoperationperformedby theISR.

Exercise 64: Assume count is initially set to 5. What is the

value of count after the ISR executes? What is the value after

the above routine ends? What would have been the value if the

ISR had executed before the first mov instruction?

A critical section is apartof aprogramthatshould
notbeinterrupted(typically becausedoingsowould
introducea racecondition). To prevent interrupts
while this code is executing, a CLI instruction is
placedbeforethecritical sectionandanSTI instruc-
tion afterit.

Raceconditionsare introducedwhenever a data
structurecanbe modifiedby both the ISR andnon-
ISR code. Accessesto suchdatamust be placedin
a critical section. An even betterapproachis to re-
designdatastructuresto eliminatesuchshared-write
variables.

Deadlock happenswhentwo threadsof execution
(e.g.ISRcodeandnon-ISRcode)preventeachother
from continuing. An examplemight be an ISR that
needsto be“enabled”beforeit passesdatato a pro-
gram. If, for somereason,the programdecidesto
wait for datato becomeavailablefrom theISRwith-
outfirst enablingit, theprogramwill “deadlocked.”

6

Edge- and Level-Triggered Inter-
rupts

Interruptrequestsignalscanbedesignedto be:

� edge-triggered:theinterruptactsasaclockand
therising(or falling) edgeof theinterruptsignal
causesaninterruptto berecorded),or

� level-triggered:theinterruptcontrollersamples
theinterruptsignalat certaintimesandrecords
aninterruptif theinput is assertedat thattime.

Onmany microprocessorsystemstheinterruptre-
questoutputsfrom multiple peripheralscanbecon-
nectedin a wired-orconfigurationto oneactive-low
interruptrequestinput.

However, on thePCbothINT andIRx areactive-
highsignalsandthuscannotbedirectlyconnectedin
awire-or’edconfiguration.In addition,the8259PIC
is configuredfor edge-triggeredinterruptinputs.

Exercise 65: Is it possible for several devices to share the same

PIC interrupt request line? What would happen if one device re-

quested an interrupt while another’s interrupt was still pending?

Sample 80x86/8259 ISR

Thecodebelow shows an80x86assemblylanguage
programthat includesan ISR. The programsetsup
an ISR for interrupttype 8 (interruptnumber0, the
timer interrupt on the IBM PC). The ISR simply
decrementsa count. The main programwaits until
thecountreacheszeroandthenterminates.

The timer interrupton the IBM PCis driven by a
clock thatgeneratesoneinterruptevery 55 millisec-
onds.With theinitial countvalueprovidedbelow the
programwaitsfor 15 secondsbeforeterminating.

Themainprogramsavesandrestorestheprevious
timer interruptvector.

When the ISR begins executiononly the IP and
CS registerswill have beeninitialized. Any other
segmentregistersthat will be usedin the ISR must
be explicitly loaded. In this case(a DOS .comfile)
the codeanddatasegmentshave the samesegment
registervaluessoDS canbeloadedfrom CS.

On entryto theISR only theIP, CSandflagsreg-
isterswill have beensavedon thecaller’s stack.

All other registersmodified by the ISR must be
saved whenstartingthe ISR andrestoredbeforere-
turning. Otherwisethestateof the interruptedcode
will bechangedby theISRandthis is likely to cause
seemingly-randomfailuresin otherprograms.

Thecodebelow usessegmentover-rides: theseg-
mentregisterto beusedto form the20-bitaddressis
explicitly givenalongwith theoffset.

;
; example of program using an ISR for
; IBM PC timer interrupt
;

isrvec equ 4*(8+0) ; location of vector for IR0

; there are 4 bytes/vector and
; PIC supplies x+8 for IRx

code segment public ; .COM file setup
assume cs:code,ds:code
org 100h

start:
mov ax,0 ; use ExtraSegment to access
mov es,ax ; vectors in segment 0

; save old interrupt vector

mov ax,es:[isrvec]
mov prevoff,ax
mov ax,es:[isrvec+2]
mov prevseg,ax

; set up new vector

cli ; disable interrupts until
; vector update is complete

mov ax,offset isr
mov es:[isrvec],ax
mov ax,cs
mov es:[isrvec+2],ax

sti ; re-enable interrupts

; wait until ISR decrements count to zero

loop: mov ax,count
cmp ax,0
jnz loop

; restore old interrupt vector

cli ; disable interrupts until
; vector update is complete

mov ax,prevoff ; restore prev.
mov es:[isrvec],ax ; offset/segment
mov ax,prevseg
mov es:[isrvec+2],ax

sti ; re-enable
; interrupts

7

; return to DOS

int 20h

; storage for demonstration program

count dw 273
prevoff dw ?
prevseg dw ?

; The ISR:

isr:
mov cs:tmpax,ax ; save working registers
mov ax,ds
mov cs:tmpds,ax

mov ax,cs ; set up DS
mov ds,ax

mov ax,count
cmp ax,0 ; don’t decrement if already zero
jz isr1
sub ax,1 ; decrement count
mov count,ax

isr1:

mov al,20h ; write EOI command to 8259 PIC
out 20h,al ; to re-enable interrupts

mov ax,tmpds ; restore working registers
mov ds,ax
mov ax,cs:tmpax

iret ; return from ISR and
; re-enable interrupts

tmpax dw ?
tmpds dw ?

code ends
end start

Exercise 66: Why must interrupts be disabled while updating

the interrupt vector?

Exercise 67: How will the PC’s time of day change when this

program is run? What would happen if the interrupt were not

restored?

Exercise 68: Could “the stack” be used to save the values of

the registers that will be changed in the ISR? Which stack will

be used? What are the advantages and disadvantages of doing

so?

8

