
ELEC 379 : DESIGN OF DIGITAL AND M ICROCOMPUTER SYSTEMS

1999/2000 WINTER SESSION, TERM 2

RTL Designwith VHDL
Thischaptercoverssomefeaturesof VHDL thatareusefulfor logic synthesis.You shouldlearn to:

� make library packagesvisible
� declarecomponentsin architecturesandpackages
� declareconstants
� instantiatecomponentsinto an architecture
� declarestd logic, std logic vector, signedandunsignedsignals
� declareenumeratedtypesandsubtypesof array typesin architecturesandpackages
� declareanduseentitieswith generics
� useconditionalsignalassignments
� convertbetweenstd logic vector, unsignedandinteger types
� instantiatetri-stateoutputs
� createRAMandROM memories

We will alsolearnan approach to logic designcalledRegisterTransferLevel (RTL)or “dataflow” design.Thisis the
methodcurrentlyusedfor thedesignof complex logic circuitssuch asmicroprocessors.
You shouldbeableto:

� classifya VHDL descriptionasa behavioral, structural, or dataflow(RTL)description
� identifytheregistersandlogic/arithmeticfunctionsrequiredto implementa particular algorithm
� partition this algorithminto a sequenceof theseoperationsandregistertransfers
� write synthesizeableVHDL RTLcodeto implementthealgorithm

We also cover threetopicsrelatedto the designof interfacesto logic circuits: metastability, input synchronization
andglitches.You shouldbeableto: identifycircuitswhere metastablebehaviouris possible;computethemeantime
betweenmetastableoutputs;identify circuits that could fail dueto asynchronousinputs; add synchronizerflip-flops
to reducetheprobability of metastability;removeraceconditionsby registeringinputs;anduseregisteredoutputsto
eliminateglitches.

Reserved Words

Table 1 lists the 97 reserved words that cannotbe
usedasVHDL identifiers.

Libraries, Packages and Components

Whendesigningcomplex logic circuitsit helpsto de-
composea designinto simplerparts. Eachof these
partscan be written and testedseparately, perhaps
by differentpeople.If thepartsaresufficiently gen-
eral thenit’s often possibleto re-usethemin future
projects. In VHDL, designre-useis done by us-
ing “components.” A componentcanbe a general-
purposebuilding-block (e.g. anadderor a counter),

or it canbesub-systemof yourdesign.

Beforewe usea component,we first needto de-
clareit. A componentdeclarationis very similar to
anentity declaration— it definesthe input andout-
putsignals,not thefunctionality.

In orderto avoid declaringeachcomponentin ev-
ery architecturewhereit is used,we typically place
componentdeclarationsin “packages.” A package
typically containsa set of componentdeclarations
for aparticularapplication.Packagesarethemselves

lec3.tex 1

abs access after alias all and architecture ar-
ray asser t attrib ute begin bloc k bod y buff er bus
case component configuration constant discon-
nect downto else elsif end entity exit file for func-
tion generate generic group guarded if impure in
iner tial inout is label librar y linka ge literal loop
map mod nand new next nor not null of on open
or other s out package por t postponed procedure
process pure rang e recor d register reject rem re-
por t return rol ror select severity signal shared
sla sll sra srl subtype then to transpor t type un-
affected units until use variab le wait when while
with xnor xor

Table1: VHDL reservedwords.

storedin “libraries”:

Library
�

component

component

Package
�

component

component

Package
�

In the Synopsys Design Compiler1 and
Max

�
PlusII VHDL implementations, a library

is a directory and each packageis a file in that
directory. The packagefile is a databasecontaining
information about the componentsin the package
(thecomponentinputs,outputs,types,etc).

To usea componentin a design,we uselibrary
statementsto specifythelibrariesto besearchedand
a use statementfor eachpackagewe needto use.
The two most commonly usedlibraries are called
IEEE andWORK.

TheWORK library is alwaysavailablewithout hav-
ing to usea library statement.In DesignCompiler
the WORK library is a subdirectoryof the currentdi-
rectory called WORK while in Max

�
PlusII it is the

currentprojectdirectory.
library anduse statementsmustbeusedbefore

each designunit (entity or architecture)that uses
thosepackages2. For example,if you wantedto use
the numeric_bit packagein the ieee library you
woulduse:

1Thelogic synthesizerusedto createtheschematicsin these
lecturenotes.

2An exception:whenanarchitectureimmediatelyfollows its
entity you neednot repeatthelibrary anduse statements.

library ieee ;
use ieee.numeric_bit.all ;

andif youwantedto usethedsp packagein theWORK
library youwoulduse:

use work.dsp.all ;

Exercise 35: Why is there no library statement in the second

example?

Note thata componentdefinesan interfaceto an-
other device. That device may not have beende-
signedwith VHDL sotheremaynotnecessarilybea
correspondingentity declaration.

Creating Components

A componentdeclarationis similar to anentity dec-
larationanddefinestheinput andoutputsignals.

Componentdeclarationscan be placedin an ar-
chitecturebeforethe begin. But it’s usually more
convenient to put componentdeclarationswithin a
package declaration. When we compile (or “ana-
lyze”) thepackagedeclarationtheinformationabout
thecomponentsin thepackageis savedin afile in the
WORK library. Thecomponentsin thepackagescan
thenbeusedin anarchitecture(in thatsamefile or in
otherfiles) by usingtheappropriateuse statements.

For example,the following codedeclaresa pack-
agecalledflipflops. This packagecontainsonly
onecomponent,rs, with inputsr ands andanout-
putq:

package flipflops is
component rs

port (r, s : in bit ; q : out bit) ;
end component ;

end flipflops ;

Exercise 36: If this code was stored in a file called ff.vhd, how

many files would be created? What would they contain? Where

would they be placed?

Component Instantiation

Oncea componenthasbeendeclared,it canbeused
(“instantiated”)in anarchitecture.A componentin-
stantiationdescribeshow thecomponentis “hooked

2

up” to theothersignalsin thearchitecture.It is acon-
currentstatement(asis a selectedassignmentstate-
ment).�

The following exampleshows how three2-input
exclusive-or gatescan be used to build a 4-input
parity-checkcircuit using componentinstantiation.
This type of descriptionis calledstructural VHDL
becausewe aredefiningthestructureratherthanthe
behaviour of thecircuit.

In thiscasewehaveputthecomponentdeclaration
into thefile mypackage.vhd. Thexor_pkg contains
thexor2 component(althougha typicalpackagede-
finesmorethanonecomponent):

-- define an xor2 component in a package

package xor_pkg is
component xor2

port (a, b : in bit ; x : out bit) ;
end component ;

end xor_pkg ;

A secondfile, parity.vhd, describesthe parity
entity thatusesthexor2 component:

-- parity function built from xor gates

use work.xor_pkg.all ;

entity parity is
port (a, b, c, d : in bit ; p : out bit) ;

end parity ;

architecture rtl of parity is
-- internal signals
signal x, y : bit ;

begin
x1: xor2 port map (a, b, x) ;
x2: xor2 port map (c, x, y) ;
x3: xor2 port map (d, y, p) ;

end rtl ;

Theresultingtop-level schematicfor theparity en-
tity is:

Exercise 37: Label the connections within the parity generator

schematic with the signal names used in the architecture.

When the parity.vhd file is analyzed(“com-
piled”), thesynthesizerwill searchthe(WORK) direc-
tory for thexor_pkg package.

Wecouldalsohave put thexor_pkg packagedec-
laration in the parity.vhd file (the packagefile

would then be recreatedevery time we analyzed
parity.vhd).

Althoughcomponentsdon’t necessarilyhaveto be
createdusingVHDL, we couldhave donesoby us-
ing thefollowing entity/architecturepairin file called
xor2.vhd:

-- xor gate

entity xor2 is
port (a, b : in bit ; x : out bit) ;

end xor2 ;

architecture rtl of xor2 is
begin

x <= a xor b ;
end rtl ;

VHDL versus C Terminology

Thefollowing comparisonshows someroughequiv-
alentsbetweentheVHDL conceptsdescribedabove
andC programming3.

VHDL C
analyze compile
elaborate link
component function
instantiate call
use #include
package DLL
library directory

std logic Packages

The IEEE library contains two useful packages.
Thesepackagesdefine alternatives to the bit and
bit_vector typesfor logic design.

The first package, std_logic_1164, de-
fines the types std_logic (similar to bit) and
std_logic_vector (similar to bit_vector). The
advantageof the std_logic typesis that they can
have valuesotherthan’0’ and’1’. For example,an
std_logic signalcanalsohave undefined(’X’) and
high-impedancevalues(’Z’). Thestd_logic_1164
packagealso redefines(“overloads”) the standard

3Theeffect of a call is ratherdifferentthana componentin-
stantiation: in VHDL we get an extra copy of the component
eachtime it is used.In C we getonly onecopy of a functionno
matterhow many timesit is called.

3

booleanoperators(and, or, not, etc.) so that they
work with std_logic signals.

Thesecondpackage,std_logic_arith4 defines
the types signed and unsigned. Theseare sub-
typesof std_logic_vector with overloadedoper-
atorsthat allow themto be usedboth asvectorsof
logic valuesand as as binary numbers(in signed
two’scomplementor unsignedrepresentations).The
hierarchyof theselogic typescouldbedrawn asfol-
lows:

std_logic std_logic_vector

signed unsigned

declared in
�
 std_logic_1164

declared in
�
 std_logic_arith

The standardarithmeticoperators(+, -, *, /, **,
>, <, <=, >=, =, /=) canbeappliedto signalsof type
signed or unsigned. Notethatit maynotbepracti-
cal or possibleto synthesizecomplex operatorssuch
asmultiplication,division or exponentiation.

For example,wecouldgeneratethecombinational
logic to build a4-bit adderusingthefollowing archi-
tecture:

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

entity adder4 is
port (
a, b : in unsigned (3 downto 0) ;
c : out unsigned (3 downto 0)) ;

end adder4 ;

architecture rtl of adder4 is
begin

c <= a + b ;
end rtl ;

Theresulting(rathermessy)schematicis:

4TheIEEEstandardis reallynumeric std but it’ snotwidely
used.

Constants

Youcandeclaresymbolicconstantsin thesameway
assignals.For example:

constant zero_bits : unsigned (3 downto 0) := "0000" ;

A constantdeclaredin a packageis available to all
designunits (packages,entities and architectures)
thatuse thatpackage.Youshouldusesymboliccon-
stantsfor any valuesthatarelikely to changeor if it
makesyourcodeeasierto reador easierto modify.

Integers

VHDL alsoincludesaninteger typewhich is use-
ful for specifyingsmall constants(e.g. next x <=
x + 1 ;). However, signals should be declared
std_logic or one of its subtypes,not integer.
Declarationssometimesuse the natural (values��� 0), andpositive (values � 0) types. Integer
constantscanbespecifiedin non-decimalbase.For
example, the value 2000 hex can be specifiedas:
16#2000#.

Type Conversion Functions

VHDL is a strongly-typedlanguage– eachopera-
tor mustbe suppliedargumentsof exactly the right
type or the synthesizerwill give an error message.
Although many functionsandoperators(e.g. and)

4

are overloadedso that you can usethe samefunc-
tion/operatorwith morethanonetype,in many cases
you	 will needto usetypeconversionfunctions.

Thefollowing typeconversionfunctionsarefound
in the thestd_logic_1164 packagein theieee li-
brary:

from to function
lv bv to bitvector(x)
bv lv to stdlogicvector(x)

The abbreviationsbv, lv, un andin areusedfor
bit_vector, std_logic_vector, unsigned and
integer respectively.

Thefollowing typeconversionfunctionsarefound
in thethestd_logic_arith packagein theieee li-
brary.

from to function
lv un unsigned(x)
un lv std logic vector(x)
un in conv integer(x)
in un conv unsigned(x,len)
in lv conv std logic vector(x,len)

Functions in the std_logic_arith package
“overload” most of the arithmeticand comparison
operators(e.g. +, =) sothat they take integeraswell
asunsigned operands.

Note that whenconverting aninteger you must
explicitly specify the numberof bits in the result
(len).

For example:

constant awidth : integer := 24 ;
constant dwidth : integer := 8 ;
constant r1addr : std_logic_vector (awidth-1 downto 0)

:= to_stdlogicvector(X"1A_0002") ;
signal abus : unsigned (awidth-1 downto 0) ;
signal r1, d : std_logic_vector (dwidth-1 downto 0) ;

...
r1 <=

d when abus = unsigned(r1addr) else
"00000000" ;

Exercise 38: What is the type of the constant X"1A 0002"?

What is the purpose of the unsigned() function in the last line

of the above example? What conversion function(s) would you

need to use if r1addr was declared to be of type bit vector?

Type Declarations

It’s oftenusefulto make up new typesfor a project.
Wecando this in VHDL by usingtypedeclarations.
The most commonusesfor definingnew typesare
to createsignalsof a given width (i.e. a bus) and
to declaretypesthat can only have oneof a set of
possiblevalues(calledenumerationtypes).

Type declarationsare often placed in packages
to make them available to multiple design units.
The following example shows a packagecalled
dsp_types thatdeclarestwo new types:

package dsp_types is
type mode is (slow, medium, fast) ;
subtype word is std_logic_vector (15 downto 0) ;

end dsp_types ;

Notethatweneedto useasubtype declarationin
thesecondexamplebecausethestd_logic_vector
typeis alreadydefined.

Exercise 39: Write a declaration for a signal that controls

whether the value in a register should be loaded, incremented,

decremented, or held. Write the declaration for an 8-bit signal

type called byte.

Generics

An entity canbedeclaredwith a busor registersize
that is left undefineduntil the componentis used
(“instantiated”)by addinga genericclausein its en-
tity andcomponentdeclarations.For example,areg-
ister with negatedoutputscould be declaredin the
file nregister.vhd as:

-- register with negated output

entity nregister is
generic (width : integer) ;
port (d : in bit_vector (width-1 downto 0) ;

q : out bit_vector (width-1 downto 0) ;
clk : in bit) ;

end nregister ;

architecture rtl of nregister is
signal tmp : bit_vector(width-1 downto 0) ;

begin
process(clk)
begin

if clk’event and clk=’1’ then
tmp <= d ;

end if ;
end process ;
q <= not tmp ;

end ;

5

you might declarethe nregister componentin a
packageas:

package registers is
component nregister

generic (width : integer) ;
port (d : in bit_vector (width-1 downto 0) ;

q : out bit_vector (width-1 downto 0) ;
clk : in bit) ;

end component ;
end registers ;

andthenuseit in anotherarchitectureasfollows:

use work.registers.all ;
...

r1: nregister
generic map (8)
port map (din, dout, clk) ;

...

You shouldusegenericsif your componentmight
have to beinstantiatedwith varioussignalwidths.

Attributes

Eachsignal hasa numberof propertiesassociated
with it which canbe extractedandusedin expres-
sions by using VHDL’s attributes. For example,
the numberof elementsin an array x is given by
x’length. Otherusefulattributesareleft, right,
high, low whichextracttheappropriateindex limits
andrange whichextractstheindex range.

Conditional Assignment

In thesamewaythataselectedassignmentstatement
modelsacasestatementin asequentialprogramming
language,aconditionalassignmentstatementmodels
an if/else statement. Like the selectedassignment
statement,it is alsoaconcurrentstatement.

For example,thefollowing circuit outputsthepo-
sition of theleft-most’1’ bit in theinput:

library ieee ;
use ieee.std_logic_1164.all ;

entity nbits is port (
b : in std_logic_vector (3 downto 0) ;
n : out std_logic_vector (2 downto 0)) ;

end nbits ;

architecture rtl of nbits is

begin
n <=

"100" when b(3) = ’1’ else
"011" when b(2) = ’1’ else
"010" when b(1) = ’1’ else
"001" when b(0) = ’1’ else
"000" ;

end rtl ;

Notethattheconditionsaretestedin theorderthat
they appearin thestatementandonly thefirst value
whosecontrollingexpressionis trueis assigned.

In the sameway that we canview a selectedas-
signmentstatementastheVHDL modelfor a ROM
or lookup table,a conditionalassignmentstatement
can be viewed the VHDL descriptionof a tree of
multiplexers. For example,the structureof the ex-
ampleabove couldbedrawn as:

"100"

"011"

"010"

"001"

"000"

b(0)=’1’
�

b(1)=’1’
�

b(2)=’1’
�

b(3)=’1’
�

n

Synthesizingtheabove descriptionresultsin:

Exercise 40: Write a conditional assignment that models a 2-

to-1 multiplexer. Use an array x as the input, a signal sel to

select the input and a signal y as the output. Repeat for a 4-to-1

multiplexer (sel is now an array).

Thechoiceof selectedor conditionalassignments
canaffect the logic that is generated.A conditional
assignmentimpliesanorderedsequenceof two-way
decisionswhich results in the multiplexer tree as
shown above. A selectedassignmentimpliesa logic
circuit that evaluatesall possibleinputs simultane-
ously. This implies a single-stagesum-of-products
(or equivalent)circuit. Thecircuit generatedby ase-
lectedassignmentwill typically requirelesslogic but
will incura longerpropagationdelay.

However the logic synthesizermay needto opti-
mizetheoriginalcircuit to meeteitherspeedor space
constraints.Thefinal circuit maynotmatcheitherof
theabove models.

6

Tri-State Buses

A
�

tri-stateoutputcanbesetto highandlow logic lev-
elsaswell asto a third state:high-impedance(‘Z’).
This type of outputis usedwheredifferentdevices’
outputsareconnectedtogetheranddrive a common
bus(hopefullyatdifferenttimes!).To specifythatan
outputshouldbesetto thehigh-impedancestate,we
usea signalof typestd_logic andassignit a value
of ’Z’.

The following exampleshows an implementation
of a 4-bit buffer with an enableoutput. When the
enableisnotassertedtheoutputis in high-impedance
mode:

library ieee ;
use ieee.std_logic_1164.all ;

entity tbuf is port (
d : in std_logic_vector (3 downto 0) ;
q : out std_logic_vector (3 downto 0) ;
en : in std_logic
) ;

end tbuf ;

architecture rtl of tbuf is
begin

q <=
d when en = ’1’ else
"ZZZZ" ;

end rtl ;

Theresultingschematicfor thetbuf is:

Tri-stateoutputsareusedprimarily to implement
bidirectionalbussignals.Bidirectionalbusesarede-
claredof typeinout ratherthanin or out andtheir
valuescanbeboth‘read’ and‘written’ within thear-
chitecture(unlikesignalsof typeout). Whenthebus
is to actasaninput, thebidirectionalbussignalsare
driven to the high-impedancestateand in this case
it’s thevalueof othersignalsthatdeterminethesig-
nal’s value.

Thetri-stateenableis usuallycontrolledby anad-
dressdecoderor otherenableinput.

Memory Models

VHDL alsoallows the useof arrayswith signal in-
dicesto modelrandom-accessmemory(RAM). The
following exampledemonstratesthe useof VHDL
arraysaswell asbi-directionalbuses.We mustuse
thetype-conversionfunctionconv_integer because
the addressinput, a, is of type unsigned while the
arrayindex mustbeof typeinteger.

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

entity ram is port (
-- bi-directional data signal
d : inout std_logic_vector (7 downto 0) ;
-- address input
a : in unsigned (1 downto 0) ;
-- output enable and write strobe (clock)
oe, wr : in std_logic) ;

end ram ;

architecture rtl of ram is
subtype byte is std_logic_vector (7 downto 0) ;
type byte_array is array (0 to 3) of byte ;
signal ram : byte_array ;

begin
-- output value is the indexed array element
d <=

ram(conv_integer(a)) when oe = ’1’ else
"ZZZZZZZZ" ;

-- register the indexed array element
process(wr)
begin

if wr’event and wr = ’1’ then
ram(conv_integer(a)) <= d ;

end if ;
end process ;

end rtl ;

Exercise 41: Modify the design above to create a 16-element, 4-

bit wide RAM with separate input and output signals. How could

you model a ROM?

Theresultof synthesizingthisdescriptionis:

7

For many implementationtechnologies(FPGAs,
gatearrays,or standard-cellASICs) thereare usu-
ally vendor-specificwaysof implementingmemory
arrays that give better results. However, using a
VHDL-only model with “random logic” as shown
aboveismoreportableandmaybepracticalfor small
memoriessuchasCPU“registerfiles.”

Exercise 42: Why is portability desirable?

Design Strategies

Thereareanumberof strategiesthatareusefulwhen
designingcomplex logiccircuits.Youmayrecognize
similarstrategiesthatareusedin computerprogram-
ming.

One strategy is to design at the most abstract
(“highest”) level possiblewith the tools available.
For example, using a behavioral designstyle with
VHDL insteadof a structuralstyle (e.g. schemat-
ics)will make it easierto write, read,document,and

debug yourdesign.

Anotherdesignstrategy is hierarchicaldecompo-
sition. The device being designedshould be de-
composedinto a numberof modules(representedas
VHDL entities) that interfacethroughwell-defined
interfaces(VHDL ports). The internal structureof
thesemodulesshouldnotbevisible from outsidethe
module. Eachof thesemodulesshouldthenbe fur-
thersubdividedinto othermodules.Thedecomposi-
tion processshouldbe repeateduntil the remaining
modulesaresimpleenoughto be easilywritten and
tested.This decompositionmakesit easyto testthe
modulesindividually, allows modulesto be re-used
andallowsmorethanonepersontowork onthesame
projectat thesametime.

It’salsoagoodideato keepthedesignasportable
aspossible.Avoid using languagefeaturesthat are
specificto a particularmanufactureror target tech-
nology unlessthey are necessaryto meetother re-
quirements. This will make it possibleto usedif-
ferentmanufacturingprocessesanddifferentdevices
with aminimumof redesign.

Structural Design

Structuraldesignis the oldest digital logic design
method. In this methodthe designerdoesall the
work. Thedesignerselectsthelow-level components
and decidesexactly how they are to be connected.
The parity generatordescribedpreviously is an ex-
ampleof structuraldesign.

A structuraldesigncanbe representedasa parts
list anda list of theconnectionsbetweenthepinson
the components(for example: “pin 12 on chip 3 is
connectedto pin 5 on chip 7”). This representation
of acircuit is calledanetlist.

Schematiccapture is themostcommonstructural
designmethod.Thedesignerworkswith a program
similarto adrawing programthatallowscomponents
to beinsertedinto thedesignandconnectedto other
components.

Exercise 43: What would be the most common type of state-

ment in a structural VHDL description?

8

Behavioral Design

At the other extreme,a behavioral designis meant
to demonstratethe functionalbehaviour of a device
without concerningitself aboutimplementationde-
tails. Thusa behavioral designmay includeopera-
tions suchas integer division or behaviour suchas
propagationdelaysthataredifficult or impossibleto
synthesize.

However, every designshouldstartwith a behav-
ioral description.Thebehavioral descriptioncanbe
simulatedandusedto verify thatall of the required
aspectsof thedesignhave beenidentified. Theout-
put of a behavioral descriptioncanbe comparedto
theoutputof astructuralor RTL descriptionto check
for errors.

Exercise 44: A VHDL description contains non-synthesizeable

constructs such as propagation delays. Is it a behavioural or

structural description?

RTL Design

RegisterTransferLevel,or RTL5 designliesbetween
a purelybehavioral descriptionof thedesiredcircuit
anda purelystructuralone.An RTL descriptionde-
scribesacircuit’s registersandthesequenceof trans-
fersbetweentheseregistersbut doesnotdescribethe
hardwareusedto carryout theseoperations.

The stepsin RTL designare: (1) determinethe
numberand sizesof registersneededto hold the
datausedby thedevice, (2) determinethe logic and
arithmeticoperationsthat needto be performedon
theseregister contents,and (3) designa statema-
chine whoseoutputscontrol how the register con-
tentsare updatedin order to obtain the desiredre-
sults.

Producingan RTL designis similar to writing a
computerprogramin a conventional programming
language.Choosingregistersis the sameaschoos-
ing variables.Designingtheflow of datain the“dat-
apath” is analogousto writing expressionsinvolv-
ing thevariables(registers)andoperators(combina-
tional functions).Designingthecontrollerstatema-
chine is similar to decidingon the flow of control
within theprogram(if/then/else,while-loops,etc).

5The “L” in RTL sometimesstands for “Language” or
“Logic” – all refer to the samemethodof designingcomplex
logic circuits.

As asimpleexample,consideradevice thatneeds
to addfour numbers.In VHDL, givensignalsof the
correcttype,wecansimplywrite:

s <= ((a + b) + c) + d ;

This particulardescriptionis simpleenoughthat
it canbesynthesized.However, theresultingcircuit
will bea fairly large combinationalcircuit compris-
ing threeaddercircuitsasfollows:

A behavioral description, not being concerned
with implementationdetails,would be completeat
thispoint.

However, if we wereconcernedaboutthecostof
the implementationwe might decideto breakdown
the computationinto a sequenceof steps,eachone
involving only asingleaddition:

s = 0
s = s + a
s = s + b
s = s + c
s = s + d

whereeachoperationis executedsequentially. The
logic requiredis now one adder, a register to hold
the valueof s in-betweenoperations,a multiplexer
to selectthe input to beadded,anda circuit to clear
s at thestartof thecomputation.

Althoughthis approachonly needsoneadder, the
processrequiresmorestepsandwill takelonger. Cir-
cuits that divide up a computationinto a sequence
of arithmeticandlogic operationsarequitecommon
and this type of designis called Register Transfer
Level (RTL) or “dataflow” design.

9

An RTL designis composedof (1) registersand
combinationalfunctionblocks(e.g.addersandmul-
tiple

xers) called the datapathand (2) a finite state
machine,calledthecontroller thatcontrolsthetrans-
fer of datathroughthefunctionblocksandbetween
theregisters.

In VHDL RTL designthe gate-level designand
optimizationof thedatapath(registers,multiplexers,
andcombinationalfunctions)is doneby thesynthe-
sizer. However, the designermust designthe state
machineanddecidewhich registertransfersareper-
formedin whichstate.

TheRTL designercantradeoff datapathcomplex-
ity (e.g.usingmoreaddersandthususingmorechip
area)againstspeed(e.g. having moreaddersmeans
fewer stepsare requiredto obtain the result). RTL
design is well suited for the designof CPUs and
special-purposeprocessorssuchas disk drive con-
trollers,video displaycards,network adaptercards,
etc. It givesthedesignergreatflexibility in choosing
betweenprocessingspeedandcircuit complexity.

Thediagrambelow showsagenericcomponentin
thedatapath.EachRTL designwill becomposedof
oneof the following building blocksfor eachregis-
ter. The structureallows the contentsof eachreg-
ister to be updatedat the endof eachclock period
with a valueselectedby the controller. The widths
of theregisters,thetypesof combinationalfunctions
and their inputswill be determinedby the applica-
tion. A typical designwill include many of these
components.

re
gi

st
er

m
ul

tip
le

xe
r

clock

arithmetic/logic
 function

arithmetic/logic
 function

arithmetic/logic
 function

...

fr
om

 r
eg

is
te

rs

...
...

...

from controller

RTL Design Example

To show how an RTL designis describedin VHDL
andto clarify theconceptsinvolved, we will design
afour-inputadder. Thisdesignwill alsodemonstrate
how to createpackagesof componentsthat can be
re-used.

The datapathshown below can load the register
at the start of eachclock cycle with one of: zero,
the currentvalue of the register, or the sum of the
registerandoneof the four inputs. It includesone
8-bit register, an 8-bit adderanda multiplexer that
selectsoneof thefour possibleinputsasthevalueto
beaddedto thecurrentvalueof theregister.

m
ul

tip
le

xe
r

re
gi

st
er

clock

ad
de

r

m
ul

tip
le

xe
r

0

a
b
c
d

from controller

Exercise 45: Other datapaths could compute the same result.

Draw the block diagram of a datapath capable of computing the

sum of the four numbers in three clock cycles.

The first designunit is a packagethat definesa
new type,num, for eight-bitunsignednumbersandan
enumeratedtype, states, with six possiblevalues.
nums aredefinedasasubtypeof theunsigned type.

-- RTL design of 4-input summer

-- subtype used in design

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

package averager_types is
subtype num is unsigned (7 downto 0) ;
type states is (clr, add_a, add_b, add_c,

add_d, hold) ;
end averager_types ;

The first entity definesthe datapath.In this case
thefour numbersto beaddedareavailableasinputs
to the entity andthereis oneoutput for the current
sum.

10

The inputsto thedatapathfrom thecontrollerare
a 2-bit selectorfor the multiplexer and two control
signalsto loador clear(setto 0) theregister.

-- datapath

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;
use work.averager_types.all ;

entity datapath is
port (
a, b, c, d : in num ;
sum : out num ;
sel : in std_logic_vector (1 downto 0) ;
load, clear, clk : in std_logic
) ;

end datapath ;

architecture rtl of datapath is
signal mux_out, sum_reg, next_sum_reg : num ;
constant sum_zero : num :=

conv_unsigned(0,next_sum_reg’length) ;
begin

-- mux to select input to add
with sel select mux_out <=

a when "00",
b when "01",
c when "10",
d when others ;

-- mux to select register input
next_sum_reg <=

sum_reg + mux_out when load = ’1’ else
sum_zero when clear = ’1’ else
sum_reg ;

-- register sum
process(clk)
begin

if clk’event and clk = ’1’ then
sum_reg <= next_sum_reg ;

end if ;
end process ;

-- entity output is register output
sum <= sum_reg ;

end rtl ;

Exercise 46: Label the block diagram above with the bus widths
and signal names used in the entity.

What would happen if both clear and load inputs were as-
serted? Why do we need to define both sum reg and sum sig-
nals?

How many clock cycles will it take to compute the sum of the

four inputs?

The RTL design’s controller is a statemachine
whoseoutputscontrol the multiplexers in the data-
path. Thecontroller’s inputsaresignalsthatcontrol
thecontroller’s statetransitions.In thiscasetheonly

input is anupdate signalthat tells our device to re-
computethesum(presumablybecauseoneor more
of theinputshaschanged).

This particular statemachinesits at the “hold”
stateuntil theupdatesignalis true. It thensequences
throughtheotherfivestatesandthenstopsatthehold
stateagain.Theotherfivestatesareusedto clearthe
registerandto addthefour inputsto thecurrentvalue
of theregister.

-- controller

library ieee ;
use ieee.std_logic_1164.all ;
use work.averager_types.all ;

entity controller is
port (
update : in std_logic ;
sel : out std_logic_vector (1 downto 0) ;
load, clear : out std_logic ;
clk : in std_logic
) ;

end controller ;

architecture rtl of controller is
signal s, holdns, ns : states ;
signal tmp : std_logic_vector (3 downto 0) ;

begin

-- select next state
with s select ns <=

add_a when clr,
add_b when add_a,
add_c when add_b,
add_d when add_c,
hold when add_d,
holdns when others ; -- hold

-- next state if in hold state
holdns <=

clr when update = ’1’ else
hold ;

-- state register
process(clk)
begin

if clk’event and clk = ’1’ then
s <= ns ;

end if ;
end process ;

-- controller outputs
with s select sel <=

"00" when add_a,
"01" when add_b,
"10" when add_c,
"11" when others ;

load <= ’0’ when s = clr or s = hold else ’1’ ;

clear <= ’1’ when s = clr else ’0’ ;

end rtl ;

11

Thenext sectionof codeis anexampleof how the
datapathandthecontrollerentitiescanbe placedin
a� package,averager_components, ascomponents.
In practicethe datapathand controller component
declarationswouldprobablyhave beenplacedin the
top-level architecturesincethey arenot likely to be
re-usedin otherdesigns.

-- package for datapath and controller

library ieee ;
use ieee.std_logic_1164.all ;
use work.averager_types.all ;

package averager_components is

component datapath
port (
a, b, c, d : in num ;
sum : out num ;
sel : in std_logic_vector (1 downto 0) ;
load, clear, clk : in std_logic
) ;

end component ;

component controller
port (
update : in std_logic ;
sel : out std_logic_vector (1 downto 0) ;
load, clear : out std_logic ;
clk : in std_logic
) ;

end component ;

end averager_components ;

Thetop-level averager entity instantiatesthetwo
componentsandinterconnectsthem.

-- averager

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;
use work.averager_types.all ;
use work.averager_components.all ;

entity averager is port (
a, b, c, d : in num ;
sum : out num ;
update, clk : in std_logic) ;

end averager ;

architecture rtl of averager is
signal sel : std_logic_vector (1 downto 0) ;
signal load, clear : std_logic ;
-- other declarations (e.g. components) here

begin
d1: datapath port map (a, b, c, d, sum, sel, load,

clear, clk) ;
c1: controller port map (update, sel, load,

clear, clk) ;
end rtl ;

Theresultof thesynthesizingthedatapathis:

Theregisterflip-flopsareattheupperright, theadder
is in the middle and the input multiplexer is at the
lower left.

Theresultof thesynthesizingthecontrolleris:

Thefollowing timing diagramshows thedatapath
outputandthecontrollerstateoveronecomputation.
Note that the stateandoutput transitionstake place
on the rising edgeof the clock. Also note that the
output is updatedat the endof the statein which a
particularoperationis performed.

a+b+c+d

update

clock

state

sum

clear add_a add_b add_c add_d hold
�

hold
�

0 a a+b a+b+c

hold
�

X
�

X
�

a+b+c+d

RTL Timing Analysis

As usual,thedatapathshouldbedesignedasa syn-
chronoussequentialcircuit thatusesthesameclock
for all registers. All register contentsthus change
at thesametime. Thecontrolleralsousesthesame
clockasthedatapath.

12

The result is thateachdatapathregister loadsthe
values“computed”duringonestateat theendof that
state(which is thenthestartof thecomputationfor
thenext state).

We canguaranteethat the correctresultswill be
loadedinto registersif the longestpropagationde-
lay (tPD) throughany paththroughthecombinational
logic that lies betweenregisteroutputsandinputsis
lessthanthe clock period(tclock) minusthe regis-
ters’setuptime(ts) andclock-to-output(tCO) delays:

tPD � tclock � ts � tCO

state n−1 state n state n+1

 clock edges
(change of state)

max. propagation
 delay

clock

timing margin
register setup time

register input

clock−to−
output delay

Usinga singleclock meanswe only needto com-
pute the delay throughcombinationallogic blocks
which is much simpler than having to predict the
effect of propagationdelayson clock signals. This
is why almostall large-scaledigital circuitsaresyn-
chronousdesigns.

Synthesistools can be asked to synthesizelogic
that operatesat a particularclock period. The syn-
thesizeris suppliedwith thepropagationdelayspec-
ifications for the combinationallogic components
availablein theparticulartechnologybeingusedand
it will thentry to arrangethelogic sothatthelongest
propagationdelay betweenany register output and
any registerinput is lessthantheclockperiod(minus
setupandclock-to-outputdelays).This ensuresthat
the circuit will work properlyat the specifiedclock
rate.

Behavioural Synthesis

It is possibleto work atevenhigherlevelsof abstrac-
tion thanRTL whendesigntime is more important
thancost. Advancedsynthesisprograms(for exam-
ple, Synopsys’Behavioral Compiler)canconvert a
behavioral descriptionof an algorithminto an RTL

description.Thecompilerdoesthisby automatically
allocating registersand partitioning the processing
over as many clock cycles as are requiredto meet
high-level processingtime requirements.

Metastability

Introduction

Theproperoperationof a clocked flip-flop depends
on theinput beingstablefor a certainperiodof time
before(thesetuptime) andafter (thehold time) the
clock edge.If thesetupandhold time requirements
are met, the correct output will appearat a valid
output level (betweenVOL andVOH) at the flip-flop
outputafter a maximumdelayof tCO (the clock-to-
outputdelay).However, if thesesetupandhold time
requirementsarenot met thentheoutputof theflip-
flop may take much longerthantCO to reacha valid
logic level. This is calledmetastablebehaviour or
metastability.

An invalid logic level at theoutputof theflip-flop
maybe interpretedby somelogic gatesasa ’1’ and
by othersasa ’0’. This leadsto unpredictableand
usuallyincorrectbehaviour of thecircuit.

In the synchronouscircuits we have studiedthus
far we have beenable to prevent metastabilityby
clockingall flip-flopsfrom thesameclockandensur-
ing thatthemaximumpropagationdelayof any com-
binationallogic pathis lessthantheclockperiodmi-
nusthe flip-flop setuptime andclock-to-outputde-
lay.

However, wheninputsto asynchronouscircuit are
not synchronizedto theclock, it is impossibleto en-
surethat thesetupandhold timeswill bemet. This
will eventuallyleadto theincorrectbehaviour of the
device. It is important to realize that all practical
logic circuits will eventually fail dueto metastabil-
ity. However, the designershouldtry to ensurethat
thesefailureshappenveryinfrequently(e.g.onceper
103 or 106 yearsof operation)sothatothercausesof
failurepredominate.

Computing MTBF

Theaveragetime betweenmetastableoutputs(mean
timebetweenfailuresor ‘MTBF’) is givenby thefor-
mula:

13

MTBF � eC2tMET

C1 fclk fdata

whereC1 andC2 are constantsthat dependon the
technologyusedto build theflip-flop, tmet is thedu-
ration of the metastableoutput, and fclk and fdata

arethefrequenciesof thesynchronousclockandthe
asynchronousinput respectively.

Let’s computethe MTBF assumingwe usedthe
lab FPGA board’s internal oscillator as a clock to
registerthePC-104busIOR* signal.Sincetheclock
andthesignalbeingregisteredarecomingfrom dif-
ferent oscillators the input is asynchronous. The
clock frequency, fclk is 25.175 MHz. The exact
frequency of IOR* will dependon the programbe-
ing executed,but let’s assumea valueof fCLK2

�
4 �

8 � 333
�
4 � 2 � 08 MHz. For theAltera Flex10K fam-

ily C1
� 1 � 10� 13 andC2

� 1 � 3 � 1010. For cor-
rect operationof our circuit the settlingtime of the
flip-flop output, the metastabletime tMET , must be
lessthantheclockperiodminusthemaximumprop-
agationdelaysthroughthe combinationallogic ele-
mentsminus the setuptimes of the other flip-flops
in thecircuit. The setuptime of the -4 speedgrade
10K20inputflip-flops,tIOSU , is is3.2ns,thustMET

�
tclk � tPD � tIOSU . If we assumetPD is, for example,
30ns,tMET

� 39� 7 � 30 � 3 � 2 � 6 � 5nsandtheMTBF
is:

MTBF � e1� 3 � 1010 � 6 � 5 � 10� 9

1 � 10� 13 � 25� 175 � 106 � 2 � 08 � 106 s

whichabout1033 seconds(a very long time).

Reducing Metastability

The simplestapproachis to slow down the clock
sincethis provides a longer time for the output of
theflip-flop to reacha stableoutputvalue. Because
theMTBF increasesexponentiallywith tMET asmall
reductionin clock frequency will oftenbeenoughto
increasetheMTBF to anacceptablevalue.However,
in othercasesthisapproachwill beunacceptablebe-
causetheresultingclock ratewill betooslow.

Anotherapproachis to useflip-flops with shorter
setupand hold times (and correspondinglysmaller
C1 andlargerC2 values). Whenever possible,these

“metastable-hardened”flip-flops shouldbe usedon
asynchronousinputs.

If this doesnot result in thedesireddegreeof re-
liability it is possibleto usetwo or more flip-flops
in series. In this casethe outputof the secondflip-
flop will only bemetastableif bothflip-flop outputs
weremetastable.Thedisadvantageof this approach
is that the input will now be delayedby oneto two
clockperiods(insteadof zeroto oneclock periods).

Input Synchronization

Inputs typically affect the resultsloadedinto more
thanoneflip-flop. For example,an input that con-
trols statetransitionsin a statemachineaffects the
variousflip-flops that hold the encodedstate. If an
asynchronousinput changesshortly beforea clock
edge,it is possiblethat the outputsof the combina-
tional logic will nothavereachedtheircorrectvalues
whentheflip-flops areloaded.This will almostcer-
tainly leadto inconsistentandincorrectbehaviour. A
circuit thatexhibits unpredictablebehaviour asa re-
sult of the timing of its inputsis saidto have a race
condition.

Such problems can be avoided by registering
eachasynchronousinput using a single (preferably
metastable-hardened)flip-flop andusing the output
of this flip-flop outputto drive the restof the logic.
This resultsin a delayof up to 1 clock periodbefore
thecircuit canrespondto thechangedinput. Usually
this is an acceptabletrade-off for improved reliabil-
ity.

Exercise 47: Draw the schematic of an input synchronizer.

As a generalrule, always synchronize (register)
asynchronous inputs.

Glitches

Glitchesareshorttemporarychangesin outputsthat
arecausedby differentpropagationdelaysin a cir-
cuit. Therearetwo reasonswhy glitchesareundesir-
able.

The first set of problemsis relatedto noiseand
power. Sinceglitchesareshortpulsesmuchof their
energy is at high frequenciesand this power cou-
pleseasilyonto adjacentconductors.This induces

14

noiseinto othercircuits andreducestheir noiseim-
munity. Glitchesalso causepower supply current
spikeswhichresultin voltagetransientsonthepower
supply lines. Anotherproblemwith glitchesis that
in CMOSlogic familiescurrentconsumptionis pro-
portionalto thenumberof transistorswitchingsand
glitchesleadto increasedcurrentconsumption.

Thesecondsetof problemsariseswhenthedigi-
tal outputof onecircuit is usedasa clock in another
circuit (e.g. to drive a counteror register). In this
caseglitchescauseundesiredclockedges(similar to
switch bounce). In synchronous(single-clock)cir-
cuitstheseglitchesarenotaproblem.

Glitchescanbe reducedby modifying thedesign
of thecombinationallogic. However, thisusuallyin-
troducesadditional logic. Glitcheson signalsthat
areconfinedto shortpathswithin a circuit or inside
a chip areusuallytolerated.However, whenoutputs
arebroughtoff a chip, boardor system(e.g. ontoa
bus)it is goodpracticeto eliminateglitches.

The simplestway to eliminateglitchesis to use
a registeredoutputsignal. The outputof a flip-flop
changesonly once,on theclockedge,andthuselim-
inatesany glitcheson its input. Therearetwo ways
to registeroutputs.Oftenit is possibleto useregister
outputsdirectlysuchaswhenanoutputis alreadyin
a dataregisteror whenthesignalsarestatemachine
stateregisters.Thesecondmethodis to passthesig-
nal throughanadditionalflip-flop beforeit is output.
The disadvantageof this methodis that the output
will bedelayedby up to oneclock period.

As ageneralrule,always register outputs.

15

