
ELEC 379 : DESIGN OF DIGITAL AND M ICROCOMPUTER SYSTEMS

1999/2000 WINTER SESSION, TERM 2

The80386SXProcessorBusand
Real-ModeInstructionSet

This chapterdescribesthe signalsand operation of the Intel 80386SXprocessorbus and describesa subsetof the
80x86architectureandinstructionset.
After this lectureyoushouldbeableto drawdiagramsfor theprocessorbussignalsdescribedin this lectureandstate
the valuesthat would appearon the data and addressbusesduring memoryand I/O readand write cyclesand for
interruptacknowledgecycles.
Whileit’ snot possibleto coverall thedetailsof the80x86instructionsetyoushouldlearnenoughaboutit to beable
to write simpleroutinesto serviceinterruptsandread/writedatato/fromI/O ports. In particular, youshouldbeable
to:

� write a real-mode8086assemblylanguageprogramincluding: (1) transferof 8 and16-bit databetweenregis-
tersandmemoryusingregister, immediate, direct,andregisterindirectaddressing, (2) someessentialarithmetic
andlogic instructionsonbyteand16-bit values,(3) stack push/pop,(4) input/output,(5) conditionalanduncon-
ditional branches,(6) call/return,(7) interrupt/return,(8) essentialpseudo-ops(org, db,dw).

� computea physicaladdressfromsegmentandoffsetvalues,
� describeresponseof the8086CPU to software (INT) andexternal(NMI, IRQ) interruptsandreturnfrominter-

rupts.

History

Intel’s first 16-bit CPU wasthe 8086. A versionof
the 8086that usedan 8-bit databus, the 8088,was
releasedlaterto permitlower-costdesigns.The8088
wasusedin theverypopularIBM PCandmany later
compatiblemachines.

Intel’s first 32-bit CPU was the 80386. It was
designedto bebackwards-compatiblewith thelarge
amountof softwarewhichwasavailablefor the8086.
The 80386extendedthe dataand addressregisters
to 32 bits. The Intel ’386 also includeda sophisti-
catedmemorymanagementarchitecturethatallowed
virtual memoryandmemoryprotectionto be imple-
mented.This samebasic80386architectureis used
in the latestgenerationof Pentiumand compatible
processors.

This lecturedescribestheprocessorbusof theIn-
tel 386SX,aversionof the386with a16-bit proces-
sorbus. The386EX,thechip thatwe will usein the
lab,is similarto the386SXbut alsointegratesseveral
commonly-usedperipheralsin thesamechip.

Processor Register DataBus AddressBus
Model Width Width Width

8086 16 16 20
8088 16 8 20
i386 32 32 32
i386SX 32 16 24
i386EX 32 16 24
Pentium 32 64 32

kilo- Mega- and Giga-Bytes

It is commonin talking aboutpowers of two (e.g.
memory sizes) to use the suffixes kilo Mega, and
Giga althoughthe valuesaresomewhat (about2%)
largerthanthecorrespondingpowersof ten.Express
powers of two using a value from the first column
below andasuffix from thesecondcolumn.

lec2.tex 1

20 1
21 2
22 4
23 8
24 16
25 32
26 64
27 128
28 256
29 512

210 kilo
220 Mega
230 Giga

Exercise 21: How much memory can be addressed with 20, 24

and 32-bit addresses?

’386SX CPU Signals

The386SXis packagedin a 100-pinpackage.It has
a24-bitaddressbusanda16-bitdatabus.Thenames
of the signalsare shown below. Active-low signal
namesare suffixed with ’#’ (i.e. BHE# � BHE* �

BHE)

Utility Bus

Theutility busincludesthepinsthatarerequiredfor
the processorto operateproperlybut which arenot
involved in datatransfers.This includesthepower,
ground,andclock pins.

Thetwo mostimportantpinson theCPUchip are
for powersupply(Vcc � 3.3or 5 V) andground(Vss).
The processorwill operateerratically(or not at all)
if thepowersupplyis notheldat thepropervoltage.

The next most important signal is the clock,
CLK2. Output signal transitionshappenimmedi-
ately after the rising edgeof CLK2 and inputs are
sampledon therising edgeof CLK2.

Figure1 showsexamplesof datatransfersover the
processorbus. Eachtransfer(reador write) is called
a bus cycle. Eachbus cycle requirestwo or more
processorcycles(oneT1 cycle plusoneor moreT2
cycles).Eachof theseprocessorcyclesrequirestwo
CLK2 periods.Figure11 shows how two CLK2 cy-
clesmake up a processorcycle andhow two proces-
sorcycles(T1 andT2) make upabuscycles.

Cycle Requires
processorcycle 2 CLK2 cycles
buscycle � � 2 processorcycles

Exercise 22: A 386SX CPU is operating with a 25 MHz CLK2

signal. What is the CLK2 period? How long does a processor

cycle take? How long does a bus cycle take?

Address and Data Busses

The80386SXhasa 16-bit databusanda 24-bit ad-
dressbus. ThesesignalsarelabelledD15 to D0 and
theA23 to A1 (not A0) respectively. To allow for ei-
ther8-bit or 16-bit transfersthechip usesBHE* and
BLE* (high- and low-byte enable)signalsindicate
to memoryandI/O deviceswhich byte(s)is/arebe-
ing transferred.TheBHE* indicatesa transferover
D15 to D8 andBLE* indicatesa transferover D7 to
D0.

BHE* and BLE* also indicate the memory ad-
dressbeingaccessed:BLE* andBHE* indicatead-
dresseswith A0 � 0 andA0 � 1 respectively.

Unlike theMotorola68000,this intel processoral-
lows16-bit valuesto bewritten to oddaddressesand
32-bit valuesto be written to addressesthat arenot
multiplesof 4 (i.e. memoryoperationsdo not have
beword-aligned). Thusthevaluetransferedover the
high-orderbyteof thedatabusmayor maynotcorre-
spondto thehigh-orderbyteof thevaluebeingwrit-
ten.

1FromIntel i386SXdatasheet.

2

Figure1: Examplesof 80386SXBusCycles

ThusBHE* andBLE* indicatetheaddress(es)be-
ing read or written — not the high- or low-order
bytesof aword.

Exercise 23: What signals does the Motorola 68000 use for this

purpose? How are they different?

Endianness

Intel processors,unlike Motorolaprocessors,useso-
called“little-endian” byteorder. Thismeansthat16-
or 32-bit wordsarestoredwith the least-significant
byte at the lowest-numberedaddress.This can be
confusing. We normally write memorycontentsin
increasingaddressorderfrom left to right; in little-
endianstorageorder the bytesin multi-byte words
appearin reverseorder.
Exercise 24: The 16-bit word 1234H is to be written to address
1FFH. What value will be stored at memory location 1FFH? At

which address will the other byte be stored? Write your answer
in the form of a table showing the final memory contents:

Address Data

Which byte enable(s) will need to be asserted to store these
values? How many bus cycles will be required? Write out your
answers in the form of a table showing the values of the address
bus in binary, the values on the data bus in hex, and the values
of BHE* and BLE* (H or L) for each bus cycle.

Address Data Bus BHE* BLE*
0001 1111 111x
0010 0000 000x

What if the value 12345678H was to be stored at the same ad-

dress? What if the 16- and 32-bit values were written to address

100H?

3

Processorswith wider addressbusessuchat the
’386 or Pentium require more bus enablesignals
(BE0*–BE3* or BE0*–BE7*).

Memory and I/O Address Spaces

The Motorola 68000 processorsuse conventional
memoryreadandwrite (MOVE) operationsto doin-
put andoutput. Peripheralinterfacesappearto the
processorasif they werememorylocations.

The 80x86 processorscan also use this type of
“memory-mapped”I/O but they alsohave available
specialinstructions(IN andOUT) for I/O operations.
A bus signal(M/IO*) indicateswhethera bus cycle
is dueto amemoryor anI/O instruction.Thesespe-
cial I/O instructionsallow moreflexibility in thede-
signof interfaces(e.g.extendedcyclesfor I/O oper-
ations). I/O operationscanonly bedoneon thefirst
64kB of theI/O addressspace.

On the IBM PCandcompatiblesonly thefirst 4k
of this I/O addressspaceis available(0 to 3FFH).

Bus Control

In orderto accommodateslow memoryandI/O de-
vicestheintel 80x86processorbusesuseaREADY*
input. If theREADY* input is notassertedat theend
of a T2 processorcycle the 80386SXwill generate
additionalT2 cycle(s)(seebelow).

Exercise 25: What signal does the Motorola 68000 use to ex-

tend processor cycles?

The W/R* (write/read),D/C* (data/control),and
M/IO* (memory/I/O)outputsignalsindicatethetype
of buscyclebeingexecuted(read,interruptacknowl-
edgeor write). The tablebelow shows the possible
buscycles:

D/C* M/IO* W/R* BusCycle
H H L memoryread
H H H memorywrite
H L L I/O read
H L H I/O write
L H L instructionfetch
L L L interruptacknowledge
L H H halt

Another processorbus signal, ADS*, indicates
thatthecontentsof theaddressbusandthethreesig-
nalsabove arevalid.

Exercise 26: What are the equivalent signals on the Motorola

68000 processor bus?

Reset and Interrupts

As you might suspect,the RESETinput resetsthe
processor. The CPU registercontentsareresetand
theprogramcounteris setsothattheCPUwill fetch
thenext instructionfrom memorylocationFFFFF0.
The memoryat this locationmustthereforecontain
instructionsto restartthesystem.

The NMI and INTR inputs are usedto generate
non-maskableandmaskableinterruptsrespectively.

Assertingthe NMI input causesthe processorto
executethe interrupthandlerpointedto by an inter-
rupt vectorstoredin memory.

If interrupts are enabled then assertingINTR
causesthe CPU to carry out an interrupt acknowl-
edgebus cycle which readsa 1-byteinterruptnum-
ber from the bus (typically from an interrupt con-
trol chip). Thecorrespondinginterruptvectoris then
fetchedandthecorrespondinginterrupthandlerexe-
cutedaswith NMI.

In eithercasethecurrentinstructionis completed
beforetheinterruptis recognized.Wewill cover the
detailsof theprocessor’s interrupthandlingin detail
in a laterlecture.

Other Signals

The’386SX hasanumberof othersignalswhichwe
will not cover at this time. For completeness,these
are: HOLD andHOLDA (usedby otherdevices to
requestthat the CPU to give up control of the pro-
cessorbus by disablingall of its outputs),LOCK*
(usedto prevent other devices from requestinguse
of the processorbus), NA* (“next address”usedto
“pipeline” processorcycles),andPEREQ,BUSY*,
and ERROR* (usedto interfaceto a floating point
co-processor).

80386SX Bus Cycles

Executionof each80386SXinstructionrequiresone
or more bus cycles. Typically, this involves read-
ing an instructionfrom memorypossibly followed
by transfersof databetweenthe CPU andmemory
or I/O devices.

4

In additionto the readandwrite bus cyclesfrom
memoryandI/O addressspacetheCPUcanalsoex-
ecute� aninterruptacknowledgebuscycle andcanbe
in anidle or haltedmode.

Read and Write Bus Cycles

Recallthatabuscyclerequiresat leasttwo processor
cycles(T1 andT2). Theaddressandbuscontrolsig-
nalsgo active at thestartof theT1 processorcycle.
During a write cycle thedatabus is driven with the
valueto bewritten duringthesecondhalf of T1 and
this valuestayson the bus into the first half of the
following T1 cycle. During a readcycle theproces-
sorloadsthevaluefrom thedatabusat theendof the
lastT2 cycle.

Wait States

At theendof eachT2 cycle theprocessorchecksthe
READY* input. If it is active, thebuscycle is termi-
nated,otherwiseanadditionalT2 cycle is run. These
additionalwait statesareusedto accommodateslow
memory by increasingthe time available between
when the addressis output and the time when the
datais required.If thememorybeingdesignedinto a
systemwill requirewait states,await stategenerator
circuit mustbedesignedsothatREADY* is asserted
after two or moreT2 stateshave elapsedfollowing
thestartof thebuscycle.

Input and Output Cycles

I/O read/write cycles are the same as memory
read/writecyclesexceptthattheM/IO* signalis low.

Interrupt Acknowledge Cycle

An interrupt acknowledge cycle (performedin re-
sponseto INTR) is the sameasa readcycle except
that thebus controlsignalsaresetto indicatean in-
terruptacknowledgecycle. Thevaluereadduringthe
interruptacknowledgecycle is thenmultiplied by 4
andusedto loadaninterruptvectorfrom thisaddress
in memory.

80x86 Instruction Set

Up or Down?

The“top of memory” is thehighest-valuedaddress.
A stackis saidto “grow down” whenit’saddressgets
smallerasmorevaluesareput on the stack. How-
ever, many authorsdraw diagramsshowing memory
contentsin reverseorder(with the lower-valuedad-
dressesabove higher-valuedones).Be carefulwhen
usingtheseterms.

Real and Protected Modes

While theoriginal Intel 16-bit CPUs,the8086/8088
areno longerwidely used,all later Intel processors
suchas the 80386,80486and Pentiumprocessors
can still execute8086 software. The more recent
CPUscan be switchedby software into either the
8086-compatible“real” modeor to themorepower-
ful “protected” mode. Protectedmodeextendsthe
data and addressregistersfrom 16 to 32 bits and
includessupportfor memoryprotectionandvirtual
memory. Unfortunately, thedetailsof interrupthan-
dling in protectedmodeare too complex to cover
in this coursesowe will restrictourselvesto 80x86
real-modeprogramming.

Registers

The 8086includesfour general-purpose16-bit data
registers(AX, BX, CX andDX). Theseregistercan
beusedin arithmeticor logic operationsandastem-
porary storage. The most/leastsignificant byte of
eachregistercanalsobeaddresseddirectly (e.g.AL
is theLS byteof AX, CH is MS byteof CX, etc.).

15 0
�

AX
�

BX

CX

DX

AH
�

AL
�

BH BL

CH CL

DH DL

Eachregisteralsohasa specialpurposeaswe’ll
discusslater:

5

Register SpecialPurpose
AX multiply/divide
BX index registerfor MOVE
CX countregisterfor stringoperations
DX portaddressfor IN andOUT

Thereis a 16-bit programflagsregister. Threeof
the bits indicatewhetherthe result of the most re-
centarithmetic/logicalinstructionwaszero(ZF),has
a negative sign (SF), or generateda carry or bor-
row (CF) from the most-significantbit. The over-
flow bit (OF) indicatesoverflow if the operandsare
signed(it’s thecarry/borrow from the secondmost-
significantbit). A fourth bit, the interruptenablebit
(IF) controlswhethermaskableinterruptrequests(on
theIRQ pin) arerecognized.

CF
�

ZF
�

SF
	

IFOF

15 8 7 0

Theaddressof thenext instructionto beexecuted
is heldin a16-bit instructionpointer(IP) register(the
“programcounter”).A 16-bit stackpointer(SP)im-
plementsa stackto supportsubroutinecalls andin-
terrupts/exceptions.

15 0
�

IP

15 0
�

SP
�

Exercise 27: How many bytes can be addressed by a 16-bit

value?

Thereare also threesegment registers(CS, DS,
SS)whichallow thecode,dataandstackto beplaced
in any three64 kByte “segments”within theCPU’s
1 megabyte(20-bit) addressspaceasdescribedlater.

DS

CS

SS
�

15 0

Instruction Set

We only cover thesmallsubsetof the8088instruc-
tion set that is essential. In particular, we will not

mentionvariousregisters,addressingmodesandin-
structionsthatcouldoftenprovide fasterwaysof do-
ing things.

A summaryof the80x86real-modeinstructionset
is availableon the courseWeb pageandshouldbe
printedout if youdon’t have anotherreference.

Data Transfer

TheMOV instructionis usedto transfer8 and16-bit
datato andfrom registers.Either thesourceor des-
tination hasto be a register. The otheroperandcan
comefrom anotherregister, from memory, from im-
mediatedata(a valueincludedin the instruction)or
from amemorylocation“pointedat” by registerBX.
For example,if COUNTis thelabelof amemorylo-
cationthefollowing arepossibleassembly-language
instructions:

; register: move contents of BX to AX
MOV AX,BX

; direct: move contents of the address labelled
; COUNT to AX

MOV AX,COUNT
; immediate: load CX with the value 240

MOV CX,0F0H
; memory: load CX with the value at
; address 240

MOV CX,[0F0H]
; register indirect: move contents of AL
; to memory location in BX

MOV [BX],AL

Most 80x86assemblerskeeptrack of the type of
eachsymbol (byte or word, memory referenceor
number)andrequireatype“override”whenthesym-
bol is usedin adifferentway. TheOFFSEToperator
convertsa memoryreferenceto a 16-bit value. For
example:

MOV BX,COUNT ; load the value at location COUNT
MOV BX,OFFSET COUNT ; load the offset of COUNT

16-bit registers can be pushed(the SP is first
decrementedby two andthenthe is valuestoredat
the addressin SP)or popped(the value is restored
from thememoryat SPandthenSPis incremented
by 2). For example:

PUSH AX ; push contents of AX
POP BX ; restore into BX

6

Therearesomethingsto noteaboutIntel assembly
languagesyntax:

� the orderof the operandsis destination,source
— thereverseof thatusedon the68000!

� semicolonsbegin acomment

� thesuffix ’H’ is usedto indicatea hexadecimal
constant,if the constantbegins with a letter it
must be prefixed with a zero to distinguishit
from a label

� thesuffix ’B’ indicatesabinaryconstant

� squarebrackets indicateindirect addressingor
directaddressingto memory(with aconstant)

� the sizeof the transfer(byte or word) is deter-
minedby thesizeof theregister

Exercise 28: What is the difference between the operands [BX]

and BX? What about [1000H] and 1000H? Which of these can

be used as the destination of a MOV instruction? Which of these

can used as the source?

I/O Operations

The 8086 has separateI/O and memory address
spaces.Valuesin the I/O spaceare accessedwith
IN andOUT instructions.Theportaddressis loaded
into DX andthe datais read/writtento/from AL or
AX:

MOV DX,372H ; load DX with port address
OUT DX,AL ; output byte in AL to port

; 372 (hex)
IN AX,DX ; input word to AX

Arithmetic/Logic

Arithmetic andlogic instructionscanbe performed
on byte and16-bit values. The first operandhasto
bea registerandtheresultis storedin thatregister.

; increment BX by 4
ADD BX,4

; subtract 1 from AL
SUB AL,1

; increment BX
INC BX

; compare (subtract and set flags
; but without storing result)

CMP AX,MAX

; mask in LS 4 bits of AL
AND AL,0FH

; divide AX by four
SHR AX,2

; set MS bit of CX
OR CX,8000H

; clear AX
XOR AX,AX

Exercise 29: Explain how the AND, SHR (shift right), OR

and XOR instructions achieve the results given in the comments

above.

Control Transfer

Conditionaljumpstransfercontroltoanotheraddress
dependingon thevaluesof theflagsin theflag reg-
ister. Conditionaljumpsarerestrictedto a rangeof
-128 to +127 bytesfrom the next instructionwhile
unconditionaljumpscanbeto any point.

; jump if last result was zero (two values equal)
JZ skip

; jump if greater than or equal
JGE notneg

; jump if below
JB smaller

; unconditional jump:
JMP loop

Theassembly-languageequivalentof anif state-
ment in a high-level languageis a CoMPareopera-
tion followedby aconditionaljump.

Differentconditionaljumpsareusedfor compar-
isonsof signed(JG,JGE,JL, JLEdependonOFand
CF) andunsignedvalues(JA, JAE, JB, JBEdepend
onCF only).

Exercise 30: If a and b were signed 16-bit values, what would

be the assembly-language equivalent of the C-language state-

ment if (a != 0) goto LOOP;? What about if (a <=

b) return ;? What if they were unsigned?

TheCALL andRET instructionscall andreturnfrom
subroutines.The processorpushesIP (the address
of the next instruction)on the stackduring a CALL
instructionandthecontentsof IP arepoppedby the
RET instructions.For example:

CALL readchar
...

readchar:
...
RET

7

Exercise 31: Write a sequence of a MOVE, a PUSH and a

RET instruction that has the same effect as the instruction JMP

1234H?

Segment/Offset Addressing

Sinceaddressregistersandaddressoperandsareonly
16 bits they canonly address64k bytes. In orderto
addressthe20-bit addressrangeof the8086,physi-
cal addresses(thosethatareput on theaddressbus)
are always formed by adding the valuesof one of
thesegmentregisters to the16-bit “offset” addressto
form a 20-bitaddress.

0
�

segment�
offset�

+� 0
�

physical address

Thesegmentregistersthemselvesonly containthe
most-significant16 bits of the 20-bit value that is
contributedby the segmentregisters. The leastsig-
nificant four bits of the segmentaddressarealways
zero.

By default, theDS (datasegment)registeris used
to form addressesassociatedwith datatransferin-
structions(e.g.MOV), theCS(codesegment)regis-
terisaddedto theIP register(e.g.for JMPorCALL),
andSSis addedto SP(e.g. PUSHor to save/restore
addressesduring CALL/RET or INT instructions).
Thereis also an “extra” segmentregister, ES, that
is usedwhenaccessto otherlocationsin memoryis
required.

Exercise 32: If DS contains 0100H, what address will be written

by the instruction MOV [2000H],AL? If CX contains 1122H, SP

contains 1234H, and SS contains 2000H, what addresses will

change and what will be their values when the PUSH CX instruc-

tion is executed?

The useof segmentregistersreducesthe size of
pointersto 16 bits. This reducesthe codesizebut
also restricts the addressingrangeof a pointer to
64kbytes.Performingaddressarithmeticwithin data
structureslarger than 64k is awkward. This is the
biggestdrawbackof the8086architecture.

For simplicity will restrictourselvesto shortpro-
gramswhereall of thecode,dataandstackareplaced
into thesame64ksegment(sothatCS=DS=SS).

Interrupts and Exceptions

In addition to interrupts causedby external events
(suchasanIRQ signal),certaininstructionssuchas
a dividing by zero or the INT instructiongenerate
exceptions.

The8086reservesthe lower 1024bytesof mem-
ory for an interrupt vector table. There is one
4-byte vector for each of the 256 possible inter-
rupt/exceptionnumbers. When an interrupt or ex-
ceptionoccurs,the processor:(1) pushesthe flags
register, CS,andIP (in thatorder),(2) clearsthe in-
terruptflag in the flagsregister, (3) loadsIP (lower
word)andCS(higherword) from theappropriatein-
terrupt vector location, and (4) transferscontrol to
thatlocation.

For externalinterrupts(IRQ or NMI) theinterrupt
numberis readfrom thedatabusduringaninterrupt
acknowledgebus cycle. For internalinterrupts(e.g.
INT instruction)the interruptnumberis determined
by theinstruction.

TheINT instructionallows a programto generate
any of the 256 interrupts.This “softwareinterrupt”
is typically usedto accessoperatingsystemservices.

Exercise 33: MS-DOS programs use the INT 21H instruction

to invoke an “exception handler” that provides operating system

services. Where would the address of the entry point to these

DOS services be found? Where is the new IP? The new CS?

The CLI and STI instructions clear/set the
interrupt-enablebit in the flags register to dis-
able/enableexternalinterrupts.

TheIRET instructionpopstheIP, CSandflagsreg-
ister values(in that order) from the stackand thus
returnscontrol to the instructionfollowing the one
whereinterruptor exceptionoccurred.

Exercise 34: Programs typically store their local variables and

return addresses on the stack. What would happen if you used

RET instead of IRET to return from an interrupt?

Pseudo-Ops

A numberof assemblerdirectives(“pseudo-ops”)are
alsorequiredto write assemblylanguageprograms.
ORG specifiesthe locationof codeor datawithin the
segment,DB and DW are usedto include bytesand
wordsof datain aprogram.

8

Example

This is a simpleprogramthatdemonstratesthemain
featuresof the8086instructionset. It usesthe INT
instructionto “call” MS-DOSvia the 21H software
interrupthandlerto write charactersto thescreen.

; Sample 8086 assembly language program. This program
; prints the printable characters in a null-terminated
; string (similar to the unix ("strings" program).

; There is only one "segment" called "code" and the
; linker can assume DS and CS will be set to the right
; values for "code". The code begins at offset 100h
; within the segment "code" (the MS-DOS convention for
; .COM files).

code segment public
assume cs:code,ds:code
org 100h

start:
mov bx,offset msg ; bx points to string

loop:
mov al,[bx] ; load a character into al
cmp al,0 ; see if it’s a zero
jz done ; quit if so
cmp al,32 ; see if it’s printable
jl noprt ; don’t print if not
call printc ; otherwise print it

noprt:
inc bx ; point to next character
jmp loop ; and loop back

done:
int 20h ; return to DOS

; subroutine to print the byte in al

printc:
push ax ; save ax and dx
push dx
mov dl,al ; use DOS to
mov ah,02H ; print character
int 21H
pop dx ; restore ax and dx
pop ax
ret

msg db ’This’,9,31,32,’is’,20H,’a string.’,0

; example of how to reserve memory (not used above):

buf db 128 dup (?) ; 128 uninitialized bytes

code ends
end start

TheOFFSET operatoris usedto tell this assembler
to usethe offset of msg from the start of the code
segmentinsteadof loadingbx with thefirst word in
thebuffer.

9

