
ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

1998/99 WINTER SESSION, TERM 1

The Intel 8086 Instruction Set
This lecture describes a subset of the 8086 architecture and instruction set. While it’s not possible to cover all the
details of the 8086 in one lecture you should learn enough about the 8086 to be able to write simple routines to service
interrupts. In particular, you should be able to:

write simple program in 8086 assembly language including: (1) transfer of 8 and 16-bit data between registers
and memory using register, immediate, direct, and register indirect addressing, (2) some essential arithmetic and
logic instructions on byte and 16-bit values, (3) stack push/pop, (4) input/output, (5) conditional and uncondi-
tional branches, (6) call/return, (7) interrupt/return, (8) essential pseudo-ops (org, db, dw).

compute a physical address from segment and offset values,

describe response of the 8086 CPU to NMI, software (INT) and external (IRQ) interrupts and return from inter-
rupts.

Real and Protected Modes

While the original Intel 16-bit CPUs, the 8086/8088
are no longer widely used, all later Intel processors
such as the 80386, 80486 and Pentium processors
can still execute 8086 software. The more recent
CPUs can be switched by software to either the 8086-
compatible “real” mode or to “protected” mode. Pro-
tected mode extends the data and address registers
from 16 to 32 bits and includes support for memory
protection and virtual memory. Unfortunately, the
details of interrupt handling in protected mode are
too complex to cover in a reasonable amount of time
so we restrict ourselves here to 80x86 real-mode pro-
gramming.

Registers

The 8086 includes four 16-bit data registers (AX,
BX, CX and DX). BX can also be used as an address
register for indirect addressing. The most/least sig-
nificant byte of each register can also be addressed
directly (e.g. AL is the LS byte of AX, CH is MS
byte of CX).

15 0

AX

BX

CX

DX

AH AL

BH BL

CH CL

DH DL

Three bits in a 16-bit program flags register are
used to indicate whether the result of the previ-
ous arithmetic/logical instruction was zero (ZF), has
a negative sign (SF), or generated a carry (CF).
A fourth bit, the interrupt enable bit (IF) controls
whether maskable interrupt requests (on the IRQ pin)
are recognized.

CFZFSFIF

The address of the next instruction to be executed
is held in a 16-bit instruction pointer (IP) register (the
“program counter”). A 16-bit stack pointer (SP) is
used to implement a stack to support subroutine calls
and interrupts/exceptions.

15 0

IP

15 0

SP

lec6.tex 1

Exercise: How many bytes can be addressed by a 16-bit

value?

There are also three segment registers (CS, DS,
SS) which are used to allow the code, data and
stack to be located in any three 64 kByte “segments”
within a 1 megabyte (20-bit) address space as de-
scribed below.

DS

CS

SS

15 0

Instruction Set

We only cover the small subset of the 8088 instruc-
tion set that is essential. In particular, we will not
mention various registers, addressing modes and in-
structions that could often provide faster ways of do-
ing things.

Data Transfer

Transfer of 8 and 16-bit data is done using the MOV
instruction. Either the source or destination has to
be a register. The other operand can come from an-
other register, from memory, from immediate data (a
value included in the instruction) or from a memory
location “pointed at” by register BX. For example, if
COUNT is the label of a memory location the fol-
lowing are possible assembly-language instructions
:

; register: move contents of BX to AX
MOV AX,BX

; direct: move contents of AX to memory
MOV COUNT,AX

; immediate: load CX with the value 240
MOV CX,0F0H

; memory: load CX with the value at
; address 240

MOV CX,[0F0H]
; register indirect: move contents of AL
; to memory location in BX

MOV [BX],AL

16-bit registers can be pushed (SP is first decre-
mented by two and then the value stored at SP) or

popped (the value is restored from memory at SP and
then SP is incremented by 2). For example:

PUSH AX ; push contents of AX
POP BX ; restore into BX

There are some things to note about Intel assembly
language syntax:

the order of the operands is destination,source
— the reverse of that used on the 68000!

semicolons begin a comment

the suffix ’H’ is used to indicate a hexadecimal
constant, if the constant begins with a letter it
must be prefixed with a zero to distinguish it
from a label

the suffix ’B’ indicates a binary constant

square brackets indicate accesses to memory

the sizes of the transfer (byte or word) is deter-
mined by the size of the destination

Exercise: What is the difference between the operands [CX]

and CX? What do the[1000H] and 1000H? If the label MAX had

the value 5, what would [MAX] andMAX do? Which of the above

can be used as the destination of a MOV instruction? Which of

the above can used as the source?

I/O Operations

The 8086 has separate I/O and memory address
spaces. Values in the I/O space are accessed with
IN and OUT instructions. The port address is loaded
into DX and the data is read/written to/from AL or
AX:

MOV DX,372H ; load DX with port address
OUT DX,AL ; output byte in AL to port

; 372 (hex)
IN AX,DX ; input word to AX

Arithmetic/Logic

Arithmetic and logic instructions can be performed
on byte and 16-bit values. The first operand has to
be a register and the result is stored in that register.

2

; increment BX by 4
ADD BX,4

; subtract 1 from AL
SUB AL,1

; increment BX
INC BX

; compare (subtract and set flags
; but without storing result)

CMP AX,[MAX]
; mask in LS 4 bits of AL

AND AL,0FH
; divide AX by two

SHR AX
; set MS bit of CX

OR CX,8000H
; clear AX

XOR AX,AX

Exercise: Explain how the AND, SHR (shift right), OR and

XOR instructions achieve the results given in the comments

above.

Control Transfer

Conditional jumps transfer control to another address
depending on the values of the flags in the flag reg-
ister. Conditional jumps are restricted to a range of
-128 to +127 bytes from the next instruction while
unconditional jumps can be to any point in the 64k
range (within the current “code segment” as will be
explained below).

; jump if last result was zero (two values equal)
JZ skip

; jump on less than
JL smaller

; jump if carry set (below)
JC neg

; unconditional jump:
JMP loop

The assembly-language equivalent of an if state-
ment in a high-level language is a CoMPare opera-
tion followed by a conditional jump.

Exercise: What would be the assembly-language equivalent

of the C-language statement if (a != 0) goto LOOP;?

What about if (a < b) return ;?

The CALL and RET instructions call and return from
subroutines. The processor pushes IP on the stack
during a CALL instruction and the contents of IP are
popped by the RET instructions. For example:

CALL readchar
...

readchar:
...
RET

Segment/Offset Addressing

Since address registers and address operands are only
16 bits they can only address 64k bytes. In order to
address the 20-bit address range of the 8086, physi-
cal addresses (those that are put on the address bus)
are always formed by adding the values of one of one
of the segment registers to the 16-bit address to form
a 20-bit address.

The segment registers themselves only contain the
most-significant 16 bits of the 20-bit value that is
contributed by the segment registers. The least sig-
nificant four bits of the segment address are always
zero.

By default, the DS (data segment) is used for
data transfer instructions (e.g. MOV), CS (code
segment) is used with control transfer instructions
(e.g. JMP or CALL), and SS is used with the stack
pointer (e.g. PUSH or to save/restore addresses dur-
ing CALL/RET or INT instructions).

Exercise: If DS contains 0100H, what address will be written

by the instruction MOV [2000H],AL? If CX contains 1122H, SP

contains 1234H, and SS contains 2000H, what memory values

will change and what will be their values when the PUSH CX

instruction is executed?

The use of segment registers reduces the size of
pointers to 16 bits. This reduces the code size but
also restricts the addressing range of a pointer to
64k bytes. Performing address arithmetic within data
structures larger than 64k is awkward. This is the
biggest drawback of the 8086 architecture.

We will restrict ourselves to short programs where
all of the code, data and stack are placed into the
same 64k segment (i.e. CS=DS=SS).

Interrupts and Exceptions

In addition to interrupts caused by external events
(such as an IRQ signal), certain instructions such as
a dividing by zero or the INT instruction generate
exceptions.

The 8086 reserves the lower 1024 bytes of mem-
ory for an interrupt vector table. There is one
4-byte vector for each of the 256 possible inter-
rupt/exception numbers. When an interrupt or ex-
ception occurs, the processor: (1) clears the interrupt
flag in the flags register, (2) pushes the flags register,
CS, and IP (in that order), (3) loads IP and CS (in that

3

order) from the appropriate interrupt vector location,
and (4) transfers control to that location.

For external interrupts (IRQ or NMI) the interrupt
number is read from the data bus during an interrupt
acknowledge bus cycle. For internal interrupts (e.g.
INT instruction) the interrupt number is determined
from the instruction.

The INT instruction allows a program to generate
any of the 255 interrupts. This ”software interrupt”
is typically used to access operating system services.

Exercise: MS-DOS programs use the INT 21H instruction to

request operating system services. Where would the address of

the entry point to these DOS services be found?

The CLI and STI instructions clear/set the
interrupt-enable bit in the flags register to dis-
able/enable external interrupts.

The IRET instruction pops the IP, CS and flags reg-
ister values from the stack and thus returns control to
the instruction following the one where interrupt or
exception occurred.

Exercise: What would happen if you used RET instead of

IRET to return from an interrupt?

Pseudo-Ops

A number of assembler directives (“pseudo-ops”) are
also required to write assembly language programs.
ORG specifies the location of code or data within the
segment, DB and DW assemble bytes and words of
constant data respectively.

Example

This is a simple program that demonstrates the main
features of the 8086 instruction set. It uses the INT
operation to invoke MS-DOS to write characters to
the screen.

; Sample 8086 assembly language program. This program
; prints the printable characters in a null-terminated
; string (similar to the unix ("strings" program).

; There is only one "segment" called "code" and the
; linker can assume DS and CS will be set to the right
; values for "code". The code begins at offset 100h
; within the segment "code" (MS-DOS .COM files).

code segment public
assume cs:code,ds:code
org 100h

start:
mov bx,offset msg ; bx points to string

loop:
mov al,[bx] ; load a character into al
cmp al,0 ; see if it’s a zero
jz done ; quit if so
cmp al,32 ; see if it’s printable
jl noprt ; don’t print if not
call printc ; otherwise print it

noprt:
inc bx ; point to next character
jmp loop ; and loop back

done:
int 20h ; return to DOS

; subroutine to print the byte in al

printc:
push ax ; push ax and dx
push dx
mov dl,al ; use DOS to
mov ah,02H ; print character
int 21H
pop dx ; restore ax and dx
pop ax
ret

msg db ’This’,9,31,32,’is’,20H,’a string.’,0

; example of how to reserve memory (not used above):

buf db 128 dup (?) ; 128 uninitialized bytes

code ends
end start

The offset operand is used to tell this assembler
to use the offset of msg from the start of the code.

4

