
ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

1998/99 WINTER SESSION, TERM 1

The 80386SX Processor Bus
This lecture describes the signals and operation of the Intel 80386SX processor bus.
After this lecture you should be able to draw timing diagrams for the processor bus signals described in this lecture
and state the values that would appear on the data and address buses. You should be able to do this for memory and
I/O read and write cycles and for interrupt acknowledge cycles.

History

Intel’s first 16-bit CPU was the 8086. A version of
the 8086 that used an 8-bit data bus, the 8088, was
released later to permit lower-cost designs. The 8088
was used in the very popular IBM PC and many later
compatible machines.

Intel’s first 32-bit CPU was the 80386. It was
designed to be backwards-compatible with the large
amount of software which was available for the 8086.
The 80386 extended the data and address registers
to 32 bits. The Intel ’386 also included a sophisti-
cated memory management architecture that allowed
virtual memory and memory protection to be imple-
mented. This same basic 80386 architecture is used
present in the latest generation of Pentium and com-
patible processors.

In this lecture we will describe the processor bus
of the Intel 386SX, a version of the 386 with a 16-bit
processor bus. The 386EX, the chip that we will use
in the lab, is similar to the 386SX but also integrates
several commonly-used peripherals in the same chip.

Processor Register Data Bus
8086 16 16
8088 16 8
i386 32 32
i386SX 32 16
i386EX 32 16

’386SX CPU Signals

The 386SX is packaged in a 100-pin package. It has
a 24-bit address bus and a 16-bit data bus. The names
of the signals are shown below:

Utility Bus

The utility bus includes the pins that are required for
the processor to operate properly but are not involved
in data transfers. This includes the power, ground,
and clock pins.

The two most important pins on the CPU chip are
for power supply and ground. The processor will op-
erate erratically (or not at all) unless the power sup-
ply is held at the proper voltage.

The next most important signal is the clock,
CLK2. Output signal transitions happen on the ris-
ing edge of CLK2 and inputs are also sampled on the
rising edge of CLK2.

Figure 1 shows examples of data transfers over the
processor bus. Each transfer (read or write) is called
a bus cycle. Each bus cycle requires two or more
processor cycles (one T1 cycle plus one or more T2
cycles). Each of these processor cycles requires two

lec5.tex 1



CLK2 periods. Figure 11 shows how two CLK2 cy-
cles make up a processor cycle and how two proces-
sor cycles (T1 and T2) make up a bus cycles.

Cycle Requires
bus cycle 2 processor cycles
processor cycle 2 CLK2 cycles

Exercise: A 386SX CPU is operating with a 25 MHz CLK2

signal. What is the CLK2 period? How long does a processor

cycle take? How long does a bus cycle take?

Address and Data Busses

The 80386SX has a 16-bit data bus and a 24-bit ad-
dress bus. These signals are labelled D15 to D0 and
the A23 to A1 (not A0) respectively. To allow for ei-
ther 8-bit or 16-bit transfers the chip uses BHE* and
BLE* (high- and low-byte enable) signals indicate to
memory and I/O devices which byte(s) being trans-
ferred. The BHE* indicates a transfer over D15 to D8

and BLE* indicates a transfer over D7 to D0. BHE*
and BLE* also indicate the memory address being
accessed: BLE* and BHE* indicate addresses with
A0 0 and A0 1 respectively.

Unlike the Motorola 68000, the intel chips allow
16-bit values to be written to odd addresses and 32-
bit values to be written to addresses that are not mul-
tiples of 4 (i.e. memory operations do not have be
word-aligned). Thus the value transfered over the
high-order byte of the data bus may not correspond
to the high-order byte of the value being written.

Endianness

Intel processors, unlike Motorola processors, use so-
called “little-endian” byte order. This means that 16-
or 32-bit words are stored with the least-significant
byte at the lowest-numbered address. This can be
confusing. We normally write memory contents in
increasing address order from left to right; in little-
endian storage order the bytes in multi-byte words
appear in reverse order.

Exercise: The 16-bit word 1234H is to be written to address
1FFH. What value will be stored at memory location 1FFH? At
which address will the other byte be stored? Write your answer
in the form of a table showing the final memory contents:

1From Intel i386SX data sheet.

Address Data

Which byte enable(s) will need to be asserted to store these
values? How many bus cycles will be required? Write out your
answers in the form of a table showing the values of the address
bus in binary, the values on the data bus in hex, and the values
of BHE* and BLE* (H or L) for each bus cycle.

Address Data Bus BHE* BLE*
0001 1111 111x
0010 0000 000x

What if the value 12345678H was to be stored at the same ad-

dress? What if the 16- and 32-bit values were written to address

100H?

Memory and I/O Address Spaces

The Motorola 68000 processors use conventional
memory read and write (MOVE) operations to do in-
put and output. Peripheral interfaces appear to the
processor as if they were memory locations.

The 80x86 processors can use memory-mapped
I/O but can also use special instructions (IN and
OUT) for I/O operations. A bus signal (M/IO*) in-
dicates whether a bus cycle is due to a memory or
an I/O instruction. These special I/O instructions al-
low more flexibility in the design of interfaces (e.g.
extended cycles for I/O operations). I/O operations
can only be done on the first 64kB of the I/O address
space.

Bus Control

In order to accommodate slow memory and I/O de-
vices the intel 80x86 processor buses use a READY*
input. If the READY* input is not asserted at the end
of a T2 processor cycle the 80386SX will generate
additional T2 cycle(s) (see below).

Exercise: What signal does the Motorola 68000 use to extend

processor cycles?

The W/R* (write/read), D/C* (data/control), and
M/IO* (memory/I/O) signals indicate the type of bus
cycle being executed (read, interrupt acknowledge or
write). The table below shows the possible bus cy-
cles:

2



Figure 1: Examples of 80386SX Bus Cycles

D/C* M/IO* W/R* Bus Cycle
H H L memory read
H H H memory write
H L L I/O read
H L H I/O write
L H L instruction fetch
L L L interrupt acknowledge
L H H halt

Another processor bus signal, ADS*, indicates
that the contents of the address bus and the three sig-
nals above are valid.

Exercise: What are the equivalent signals on the Motorola

68000 processor bus?

Reset and Interrupts

As you might suspect, the RESET input resets the
processor. The CPU register contents are reset and

the program counter is set so that the CPU will fetch
the next instruction from memory location FFFFF0.
The memory at this location must therefore contain
instructions to restart the system.

The NMI and INTR inputs are used to generate
non-maskable and maskable interrupts respectively.

Asserting the NMI input causes the processor to
execute the interrupt handler pointed to by an inter-
rupt vector stored in memory.

If interrupts are enabled then asserting INTR
causes the CPU to carry out an interrupt acknowl-
edge bus cycle which reads a 1-byte interrupt num-
ber from the bus (typically from an interrupt con-
trol chip). The corresponding interrupt vector is then
fetched and the corresponding interrupt handler exe-
cuted as with NMI.

In either case the current instruction is completed
before the interrupt is recognized. We will cover the

3



details of the processor’s interrupt handling in detail
in a later lecture.

Other Signals

The ’386SX has a number of other signals which we
will not cover at this time. For completeness, these
are: HOLD and HOLDA (used by other devices to
request that the CPU to give up control of the pro-
cessor bus by disabling all of its outputs), LOCK*
(used to prevent other devices from requesting use
of the processor bus), NA* (“next address” used to
“pipeline” processor cycles), and PEREQ, BUSY*,
and ERROR* (used to interface to a floating point
co-processor).

80386SX Bus Cycles

Execution of each 80386SX instruction requires one
or more bus cycles. Typically, this involves read-
ing an instruction from memory possibly followed
by transfers of data between the CPU and memory
or I/O devices.

Exercise: What factors will affect the number of bus cycles

required to complete an instruction?

In addition to the read and write bus cycles from
memory and I/O address space the CPU can also ex-
ecute an interrupt acknowledge bus cycle and can be
in an idle or halted mode.

Read and Write Bus Cycles

The address and bus control signals go active at the
start of the T1 processor cycle. During a write cycle
the data bus is driven with the value to be written
during the second half of T1. During a read cycle the
processor loads the value from the data bus at the end
of the last T2 cycle.

Input and Output Cycles

I/O read/write cycles are the same as memory
read/write cycles except that the M/IO* signal is low.

Interrupt Acknowledge Cycle

An interrupt acknowledge cycle (performed in re-
sponse to INTR) is the same as a read cycle except

that the bus control signals are set to indicate an in-
terrupt acknowledge cycle. The value read during the
interrupt acknowledge cycle is then multiplied by 4
and used to load an interrupt vector from this address
in memory.

Wait States

At the end of each T2 cycle the processor checks
the READY* input. If it is active, the bus cycle
is terminated, otherwise and additional T2 cycle is
run. These additional wait states are used to accom-
modate slow memory by increasing the time avail-
able between when the address is output and the
time when the data is required. If the memory be-
ing designed into a system will require wait states, a
wait state generator circuit must be designed so that
READY* is asserted after two or more T2 states have
elapsed following the start of the bus cycle.

4


