
ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

1998/99 WINTER SESSION, TERM 1

Sequential Logic Design
This lecture reviews the design of sequential logic.
After this lecture you should be able to design a state machine from an informal description of its operation.

Sequential Logic and State Machines

Sequential logic circuits are circuits whose outputs
are a function of their state as well as their current
inputs. The state of a sequential circuit is defined as
the contents of all of the memory devices in the cir-
cuit. Thus all sequential logic circuits have memory.

In theory, any sequential logic circuit, even the
most complex CPU, can be described as a single
state machine (also called a “finite” state machine or
FSM). There are two basic types of state machines.
In the Moore state machine the output is a function
only of the current state:

output

co
m

bi
na

tio
na

l

 lo

gi
c

memory
input

co
m

bi
na

tio
na

l

 lo

gi
c

whereas in the Mealy state machine the output is a
function of the current state and the current inputs:

output

co
m

bi
na

tio
na

l

 lo

gi
c

memory
input

co
m

bi
na

tio
na

l

 lo

gi
c

Moore state machines are simpler and are usually
preferred because it’s easier to ensure that they will
behave correctly for all inputs. However, since their
outputs only change on the clock edge they cannot
respond as quickly to changes in the input.

Exercise: Which signal in the above diagrams indicates the

current state?

Large sequential circuits such as microprocessors
have too much state to be described as a single state
machine.

Exercise: How may possible states are there for a CPU con-

taining 10000 flip-flops?

A common approach is to split up the design of
complex logic circuits into storage registers and rel-
atively simple state machines. These state machines
then control transfers between the registers. This
type of design is called as Register Transfer Level
(RTL1) design. In this lecture we will study the de-
sign of simple FSMs. In later lectures we will com-
bine these simple state machines with registers to
build relatively complex devices.

Common Sequential Logic Circuits

The flip-flop is the basic building block for designing
sequential logic circuits. It’s purpose is to store one
bit of state. There are many types of flip-flops but
the only one we will use is the D (delay) flip-flop.
The rising edge of a clock input causes the flip-flop
to store the value of the input (typically called “D”
and makes it available on the output (typically “Q”).
Thus the D flip-flop has a next-state input (D), a state
output (Q) and a clock input. The D flip-flop state
changes only on the clock edge.

Usually all of the flip-flops in a circuit will have
the same signal applied to their clock inputs. This
synchronous operation guarantees that all flip-flops
will change their states at the same time and makes it
easy to estimate how fast a clock we can use and still
have the circuit will operate properly. Avoid using
different signals for flip-flop clocks whenever possi-
ble!

A register is several D flip-flops with their clocks
tied together so that all the flip-flops are loaded si-
multaneously. A latch is a register that whose output
follows the input (is transparent) when the clock is
low.

1RTL can also mean Register Transfer Language and Regis-
ter Transfer Logic

lec3.tex 1

Exercise: What would be another name for a 1-bit register?

A shift register is a circuit of several flip-flops
where the output of each flip-flop is connected to the
input of the adjacent flip-flop:

D Q D Q D Q

clock

serial
input

serial
output

On each clock pulse the state of each flip-flop is
transfered to the next flip-flop. This allows the data
shifted in at one “end” of the register to appear at
the other end after a delay equal to the number of
stages in the shift register. The flip-flops of a shift
registers can often be accessed directly and this type
of shift register can be used for converting between
serial and parallel bit streams.

Exercise: Add the parallel outputs on the above diagram.

A counter is a circuit with an N-bit output whose
value increases by 1 with each clock. A synchronous
counter is a conventional state machine and uses
combinational circuit (an adder) to select the next
count based on the current count value. A ripple
counter is a simpler circuit in which the the Q out-
put of one flip-flop drives the clock input of the next
counter stage.

Exercise: Draw block diagrams of two-bit synchronous and

ripple counters showing the clock inputs to each flip-flop. Is a

ripple counter also a synchronous state machine?

Design of State Machines

The first step in the design of a state machine is to
specify the the inputs, the states, the outputs, and the

conditions required to change states. It’s important
to ensure these items are identified correctly. If not,
the remainder of the design effort will be wasted.

We then choose enough memory elements (typi-
cally flip-flops) to represent all the possible states. n
flip-flops can be used to represent up to 2n states (e.g.
3 flip-flops can encode up to 8 states). In some cases
we can simplify the design of the state machine by
using more than the minimum number of flip-flops.

Exercise: If we used 8-bits of state information, how many

states could be represented? What if we used 8 bits of state but

added the condition that exactly one bit had to be set at any given

time (a so-called “one-hot encoding”)?

Although it’s possible to arbitrarily encode states
into combinations of flip-flop values, sometimes a
particular encoding of states can simplify the design.
For example, in the case of a Moore state machine we
may be able to eliminate the combinational circuit
that generates the output by choosing an appropriate
encoding and possibly using more than the minimum
number of flip-flops.

As with combinational logic, the simplest descrip-
tion of a sequential circuit is as a table with one line
for each possible combination of state and inputs.
After the inputs and the state encodings have been
determined, the next step is to exhaustively enumer-
ate all the possible combinations of state and input.
Then, based on the design’s requirements, we deter-
mine the required output and next state for each line.
In the case of a Moore state machine there is only
one possible output for each state.

The final step is to design the two blocks of com-
binational logic that determine the next state and the
output. The design of these combinational circuits
proceeds as described previously.

We also need to apply a clock signal to the clock
inputs of the flip-flops. The sequential circuit will
change state on every rising edge of this clock sig-
nal. Practical circuits will also require some means
to initialize (reset) the circuit when power is first ap-
plied.

Example: Synchronous 2-bit Counter

A two-bit counter will have four states. Two flip-
flops are sufficient to implement four states. In this
case there are no inputs, the circuit merely counts up

2

at each clock signal. The transition conditions are
simply to unconditionally go from one state (count)
to the next state (next higher count).

If we use the variables Q0 and Q1 to represent the
state of the system, and Q0’ and Q1’ as the subse-
quent state, the tabular representation would be as
follows:

Q1 Q0 Q1’ Q0’
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

This example is particularly simple since there are
no inputs and the outputs are the same as the values
of the state variables. The combinational circuit only
needs to determine the next state based on the current
state. We can obtain the following sum-of-products
expressions for these equations:

Q1’ = Q1Q0 + Q1Q0
Q0’ = Q1Q0 + Q1Q0

Exercise: Write the tabular description of a counter with an

up/down input that controls the count direction. Add an enable

input that prevents the count from incrementing unless it is as-

serted.

3

