
ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

1998/99 WINTER SESSION, TERM 1

Parallel I/O Ports
This lecture covers the design of parallel I/O ports. Parallel ports are used to interface the CPU to I/O devices. Two
common parallel port standards, the “Centronics” parallel port and the SCSI interface, are also described.
After this lecture you should be able to design simple input and output I/O ports using address decoders, registers and
tri-state buffers.

I/O Ports

All useful microcomputer systems have input/output
(I/O) devices. These I/O devices move data between
the outside world and the computer. The interface
between the CPU and these I/O devices is through
registers that appear as memory locations in the ad-
dress or I/O address spaces of the processor. Through
these registers the CPU can input (read) or output
(write) a number of bits (typically one byte) at a time.

Typical examples of I/O port include output ports
that drive LEDs, ports to scan a keypad, ports to
control machinery, etc. More complex I/O inter-
faces such as floppy disk controllers or serial inter-
face chips usually contain several I/O ports. Some
ports are used to obtain status information about the
interface through “status registers” and other ports
can control the interface’s operation through “control
registers.”

For example, each printer interface on the IBM PC
has associated with it a status port that can be used to
obtain certain status information (busy, on-line, out
of paper, etc). The printer interface also has a control
port that can be used to reset the printer and set the
automatic line feed mode. In addition, there is an
output port that is used to output the character to be
printed.

Implementation of I/O Ports

Output

Output ports are implemented using registers. The
register’s data inputs (D) are connected to the CPU
data bus and the register’s clock input is driven by a
write strobe (e.g. MEMW*). In addition, an address
decoder is used to make sure the register is only re-
loaded when the CPU is addressing the desired IO or
memory address. The rising edge of the write strobe

loads the data into the register output (Q) and this
output stays fixed until the register is written again.

The following schematic shows how a register
could be connected to operate as an output port. The
CPU’s write strobe (WR*) is used to clock the data
into the register, but only if the address on the CPU
bus corresponds to the address of the output port:

address

data
D Q

WR*

8
8

IO/M*
address
decoder

The following timing diagram shows the relation-
ship between the signals. Note that the output is held
after the rising edge of the write strobe (WR*):

data

Q

CS*

WR*

Input

Input ports can also be implemented with a minimum
of hardware. A tri-state buffer is used to connect the
external digital input to the CPU’s data bus during a
read cycle if the CPU is addressing the memory or IO
address assigned to that input port. The read strobe
(RD*) is used to enable the buffer so that it connects
the external input to the CPU data bus.

The following schematic shows how a register
could be connected to operate as a parallel input port.
The CPU’s read strobe (RD*) is used to enable the
output of a tri-state buffer when RD* is active and

lec16.tex 1

the address corresponds to the address of the input
port:

CPU data

address address
decoder

parallel
 input oe

8 8

IO/M*

RD*

The value read by the CPU will be the value on the
input at the time that the port is read.

“Centronics” Parallel Printer Port

This simple unidirectional (output only) interface is
used to drive printers. There are 8 data lines and two
data transfer control lines, STROBE* and BUSY.
BUSY is an output from the printer that is high when
the printer cannot accept data. STROBE* is a an
output from the PC which is strobed (brought low
and then high again) to transfer the data on the data
lines to the printer. This interface uses TTL (L 0V
H 5V) signal levels.

Data

STROBE

BUSY

C
om

pu
te

r

P
rin

te
r

8

To write a character to the printer the computer
waits until busy is low, puts the character on data
lines and brings STROBE* low and then high again.

Data

BUSY

valid data

printer ready to
accept next character

printer becomes busy
time

data for previous character

STROBE*

There are additional handshaking lines to control
various printer features (e.g. auto line feed) and to
indicate various printer status conditions (e.g. out of
paper).

There original IBM PC’s parallel port was an
output-only Centronics-compatible interface but in
recent designs the port can also be configured as an

input. The maximum speed depends on the CPU
speed and software used but is typically 50 to 100
kbytes/s.

IEEE standard 1284 specifies a parallel port that
is bidirectional and allows for higher-speed transfers
by using hardware to take care of the handshaking
operations.

Small Computer System Interface
(SCSI)

This parallel interface allows for bidirectional data
transfer and for up to 8 hosts (“initiators”) and pe-
ripherals (“targets”) to be connected together in a bus
(parallel) topology. The SCSI interface is well de-
fined and is available on many different computers.
It is widely used to connect computers to disk and
tape drives, CD-ROMs, scanners, high-speed print-
ers, etc.

The SCSI interface includes a protocol for arbi-
trating access to the bus by initiators and for select-
ing a specific target. The actual data transfers over
the SCSI bus use a similar request/acknowledge pro-
tocol with each byte transfer being acknowledged by
the target before another byte is transferred.

Depending on the speed of the peripheral and the
host interface the bus can transfer data at up to sev-
eral megabytes per second. The SCSI devices at-
tached to the bus are electrically connected in par-
allel with each device configured to respond to a par-
ticular bus ID number (ID).

The physical interface uses a 50-pin connectors
with two connectors on each device so that they can
be daisy-chained. Because of the high bus speeds,
care has to be taken to properly terminate the bus in
it’s characteristic impedance to minimize reflections.
Like the Centronics interface the SCSI bus also uses
TTL-level signals but it needs open-collector or tri-
state drivers.

Another advantage of the SCSI interface is that it
defines a set of common commands for devices with
similar characteristics. This allows the same soft-
ware to drive different devices. For example, the
same generic commands (rewind, skip forward, etc)
can be used to control tape drives from different man-
ufacturers.

Although a SCSI interface can be built using a

2

simple parallel interface and programmed i/o, this
type of interface is too slow for most applications.
SCSI interface chips are available that implement the
interface between the CPU and the SCSI bus and
transfer data using either DMA or on-board FIFOs.

Software Aspects

The value on the output port is set with MOV (if
the port is memory-mapped) or OUT (if the port is
mapped into the I/O space) instructions. Similarly,
the value on an input port is read with a MOV or IN
instruction.

It’s often necessary to set or clear a particular bit
on an output port or to test the value of a particular
bit on an input port. This can be done with bit masks
and the bit-wise logical operations AND and OR.

Other Parallel Buses

The IDE/ATAPI parallel bus is used mainly to inter-
face a CPU to disk drivers. It is commonly seen on
IBM-PC compatible computers.

The IEEE-488 standard (also known as the Gen-
eral Purpose Interface Bus (GPIB) and HPIB) is an-
other bidirectional interface. Like the SCSI bus it
allows multiple bus masters (“talkers”) and slaves
(“listeners”). It was developed by HP who named
it HPIB (HP Interface Bus). The standard is called
IEEE-488. This bus is used mostly for control of
laboratory instruments.

3

