
ELEC 379 : MICROCOMPUTER SYSTEM DESIGN

1997/98 WINTER SESSION TERM 2

PC Interrupt Structure and 8259 DMA Controllers
This lecture covers the use of interrupts and the vectored interrupt mechanism used on the IBM PC using the Intel
8259 Programmable Interrupt Controller (PIC).
After this lecture you should be able to: decide and explain why interrupts should (or should not) be used to service a
particular peripheral and describe how the 8259 PIC handles multiple interrupt sources.

1 Review of Interrupts

Many peripheral devices such as serial interfaces,
keyboards and real-time clocks need to be serviced
periodically. For example, incoming characters or
keystrokes have to be read from the peripheral or the
current time value needs to be updated from a peri-
odic clock source.

The two common ways of servicing devices are by
polling and by using interrupts. Polling means that
a status bit on the interface is periodically checked
to see whether some additional operation needs to
be performed, for example whether the device has
data ready to be read. A peripheral interface can also
be designed to assert an interrupt input to the CPU
when it requires service. The result of asserting the
interrupt signal is to interrupt normal flow of control
and causes an interrupt service routine (ISR) to be
executed to service the device.

Polling must be done sufficiently fast that data is
not lost. Since each poll requires a certain number
of operations, this creates a certain minimum over-
head (fraction of available CPU cycles) for servicing
each device. In addition, these polling routines must
be integrated into each program that executes on the
processor.

On the other hand, since an ISR is only executed
when an interrupt occurs, there is no fixed overhead
for servicing interrupt-driven devices. However, re-
sponding to an interrupt requires some additional
overhead to save the processor state, fetch the in-
terrupt number and then the corresponding interrupt
vector, branch to the ISR and later restore the proces-
sor state.

In general, it is advantageous to use interrupts
when the overhead required by polling would con-
sume a large percentage of the CPU time or would
complicate the design of the software. It is advanta-
geous to use polling when the overhead of servicing

an interrupt is a large percentage of the time available
to service the device.

Exercise: Data is arriving on a serial interface at 4000 char-

acters per second. If this device is serviced by polling, and each

character must be read before another one is received, what is

the maximum time allowed between polls? If each poll requires

10 microseconds to complete, what fraction of the CPU time is

always being used up even when the serial port is idle? What if

there were 8 similar devices installed in the computer?

Exercise: Data is being read from a tape drive interface at

100,000 characters per second. The overhead to service an in-

terrupt and return control to the interrupted program is 20 mi-

croseconds. Can this device use an ISR to transfer each charac-

ter?

It is also possible to use a mixture of interrupt and
polled devices. For example, devices can be polled
by an ISR that executes periodically due to a clock
interrupt. It is also common for devices to buffer
multiple bytes and issue an interrupt only when the
buffer is full (or empty). The ISR can then transfer
the buffer without an ISR overhead for each byte.

Because interrupts arrive under control of multi-
ple events outside the computer’s control, it is usu-
ally difficult to predict the exact sequence in which
interrupts will happen. In applications where loss of
data cannot be tolerated (e.g. where safety would be
affected) the designer must ensure that all of the de-
vices serviced by interrupts can be properly serviced
under worst-case conditions. Typically this involves
a sequence of nested interrupts happening closely
one after another in a particular order. In some of
these systems it may be easier to use polling rather
to help ensure correct worst-case behaviour.

Exercise: Responding to an interrupt typically takes consid-

erably longer than polling a status bit. Why are interrupts useful?

lec10.tex 1

2 Maskable and Non-Maskable In-
terrupts

Like most other processors, the 80386 has two types
of interrupts: maskable and non-maskable. Mask-
able interrupts (the INTR pin) can be disabled by
clearing the IF bit (flag) in the processor status word
(a special register used to control the operation of the
CPU). Non-maskable interrupts (NMI pin) cannot be
disabled. An maskable interrupt causes an interrupt
acknowledge cycle (similar to a read cycle) which is
used to read a 1-byte interrupt type from the inter-
rupting peripheral. The interrupt type (which is not
the same as the interrupt “number”) is then used to
fetch an interrupt vector which is stored in a table in
memory. A NMI always uses the interrupt vector for
interrupt type 2, thus allowing it execute faster.

Exercise: In “protected mode” each 386 interrupt vector re-

quires 8 bytes. What is the maximum number of bytes are used

up by an interrupt vector table?

3 The 8259 in the IBM PC Archi-
tecture

The 80386 CPU only has one interrupt request pin.
Although simple systems may only have one inter-
rupt source, more complex systems must have some
way of dealing with multiple interrupt sources. The
Intel “way of doing things” is to use a chip called a
programmable interrupt controller (PIC). This chip
takes as inputs interrupt request signals from up to 8
peripherals and supplies a single INTR signal to the
CPU as shown below:

8259 PIC

INTR

IR1
IR2

IR7

IR0

data bus

INT

address

INTA
.
.
.

fr
om

 p
er

ip
he

ra
ls

CSdecoder

80386SX CPU

 bus
control logic

The PIC has 3 purposes:

1. It allows each of the individual interrupts to be
enabled or disabled (masked).

2. It prioritizes interrupts so that if multiple inter-
rupts happen simultaneously the one with the
highest priority is serviced first. The priorities
of the interrupts are fixed, with input IR0 hav-
ing the highest priority and IR7 the lowest. In-
terrupts of lower priority not handled while an
ISR for a higher-level interrupt is active.

3. It provides an interrupt type that the CPU reads
during the interrupt acknowledge cycle. This
tells the CPU which of the 8 possible inter-
rupts occurred. The PIC on the IBM PC is pro-
grammed to respond with an interrupt type of 8
plus the particular interrupt signal (e.g. if IR3
was asserted the CPU would read the value 11
from the PIC during the interrupt acknowledge
cycle).

The PIC has two control registers that can be read
or written. On the IBM PC the address decoder
for PIC places these two registers in the I/O address
space at locations 20H and 21H.

Unlike many other microprocessors both INT and
IRx are active-high signals and on the IBM PC the
IRx inputs are configured to be edge-triggered.

The interrupt inputs to the PIC are connected as
follows:

interrupt device
0 timer
1 keyboard
2 reserved
3 serial port 2
4 serial port 1
5 hard disk
6 floppy disk
7 printer 1

Exercise: When the a key on the keyboard is pressed, which

input on the 8259 will be asserted? What will the signal level be?

What value will the 80386 read from the PIC during the interrupt

acknowledge cycle?

On the IBM AT and later models there are more
than 8 interrupt sources and there are two PICs. The
slave PIC supports an additional 8 interrupt inputs
and requests an interrupt from the master PIC as if it
were an interrupting peripheral on IR2.

Exercise: What is the maximum number of interrupt sources

that could be handled using one master and multiple slave

PICs?

2

4 Programming the 8259 Interrupt
Controller

The initialization of the PIC is rather complicated
because it has many possible operating modes. The
PIC’s operating mode is normally initialized by the
BIOS when the system is booted. We will only con-
sider the standard PIC operating used on the IBM PC
and only a system with a single (master) PIC.

In it’s standard mode the PIC operates as follows:

If a particular interrupt source is not masked
then a rising edge on that interrupt request line
is captured and stored (“latched”). Multiple in-
terrupt requests can be “pending” at a given
time.

if no ISR for the same or a higher level is active
the interrupt request (INTR) signal to the CPU
is asserted

if the CPU’s interrupt enable flag is set then an
interrupt acknowledge cycle will happen when
the current instruction terminates and the inter-
rupt type for the highest pending interrupt is
supplied by the PIC to the CPU

at the end of the ISR a command byte (20H)
must be written to the PIC register at address
20H to re-enable interrupts at that level again.
This is called the ‘EOI’ (end-of interrupt) com-
mand.

During normal operation only two operations need
to be performed on the PIC:

1. Disabling (masking) and enabling interrupts
from a particular source. This is done by read-
ing the interrupt mask register (IMR) from lo-
cation 21H, using an AND or OR instruction to
set/clear particular interrupt mask bits.

2. Re-enabling interrupts for a particular level
when the ISR for that level complete. This
is done with the EOI command as described
above.

Masking/Enabling Interrupts

There are three places where interrupts can be dis-
abled: (1) the PIC interrupt mask, (2) the PIC priority
logic, and (3) the CPU’s interrupt enable flag.

Exercise: What is the difference between an interrupt “mask”

bit and an interrupt “enable” bit?

If the PIC interrupt mask bit is set then the in-
terrupt request will not be recognized (or latched).
If the PIC believes an ISR for an higher level inter-
rupt is still executing due to no EOI command having
been given for that interrupt level it will not allow in-
terrupts of the same or lower levels. If the interrupt
enable bit in the CPU’s PSW is not set then the inter-
rupt request signal from the PIC will be ignored.

Note that the CPU’s interrupt enable flag is cleared
when an interrupt happens and is restored when the
process returns from the ISR via the IRET instruc-
tion. This means that ISRs can’t be interrupted (not
even by a higher-level interrupt) unless interrupts are
explicitly re-enabled in the ISR.

Interrupt routines should be kept as short as pos-
sible to minimize the interrupt latency (see below).
Typically this involves having the ISR store values
in a buffer or set flags and then having the bulk of
the processing performed outside the ISR.

It’s possible to allow the CPU to interrupt an ISR
(resulting in nested interrupts) by setting the inter-
rupt enable bit with the STI instruction.

Exercise: How many levels deep can interrupts be nested

on the IBM PC if the ISR does not re-enable interrupts? If it re-

enables interrupts but does not issue EOI to the PIC? If it does

both? In each of these cases how much space would be required

on the interrupted program’s stack to hold the values pushed dur-

ing the interrupt acknowledge cycle if 8 bytes are saved during

each interrupt?

Interrupt Latency

Often a peripheral must be serviced within a certain
time limit after an event. For example, a character
must be read from an input port before the next on
arrives.

The interrupt latency is the maximum time taken
to respond to an interrupt request. This will include
the time it takes for the current instruction to com-
plete plus the time for the CPU to respond to the in-

3

terrupt (e.g. save the CS, EIP and flag registers on
the stack, acknowledge the interrupt and fetch the in-
terrupt vector). If an ISR is already executing and
cannot be interrupted then this also increases the in-
terrupt latency.

Edge- and Level-Triggered Inter-
rupts

Interrupt request signals can be designed to be edge-
triggered (the interrupt acts as a clock and the rising
(or falling) edge of the interrupt signal causes an in-
terrupt to be recorded) or level-triggered (the inter-
rupt controller samples the interrupt signal at certain
times and records an interrupt if the input is asserted.

Exercise: The 8259 PIC is configured for edge-triggered in-

terrupts. Is it possible to share the interrupt request inputs by

wire-OR’ing several interrupt sources? Why or why not? What if

the inputs were active-low?

4

