
ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

1998/99 WINTER SESSION, TERM 1

Lab 2 - LED Display Peripheral

Introduction

In this lab you will design a computer interface
that displays a digit from 0 to 3 on an LED. This
device will be hooked up to the system bus of a
PC-compatible single-board computer (SBC). You’ll
also write an assembly-language utility to change the
displayed digit.

You will use VHDL to design a circuit that loads
a register in response to write cycles to I/O memory
(port) address 220H. The LS two bits of the regis-
ter value are decoded to drive a seven-segment LED
display as in the previous lab.

Your utility program will use DOS to read a char-
acter (‘0’ to ‘3’) from the user and write the corre-
sponding two-bit binary value (0 to 3) to I/O port
220H.

The diagram below shows how the components
are connected:

computer (SBC)
interconnect
 board

FPGA

keyboard LED display

 bus

user

parallel
port

download and
run programs

 serial
interface

configure FPGA

lab
PC

Hardware Description

The Single-Board Computer

The single-board computer (SBC) in the lab con-
tains a 386EX microprocessor, 2 MB of dynamic
RAM (DRAM), 1 MB of “flash” EEPROM used
as a virtual disk drive, three PC-compatible inter-
face ports (two serial and one parallel), and several

PC-compatible support chips (timers, interrupt- and
DMA-controllers and a real-time clock). The SBC
boots a modified version of the DOS operating sys-
tem from the flash disk when it is reset.

The SBC does not have a video display. Instead,
you use a “terminal emulator” program such as Win-
dows’ Hyperterm to issue DOS commands to the
SBC through the serial interface.

Although the SBC has enough memory to run sim-
ple DOS programs, it does not have software devel-
opment tools installed on it (editor, assembler, de-
bugger, etc). You will edit and assemble programs
on the lab PC, download the compiled program (the
.COM file) through the serial interface to the SBC
and then run your programs on the SBC.

The SBC has a system bus that allows peripheral
interface cards such as video displays, LAN cards,
analog interfaces, etc to be added to the computer.
The system bus used in the SBC is a PC-104 bus
which is electrically the same as the ISA bus found in
most PCs but with a more compact and robust 104-
pin connector. Most of the ISA/PC-104 bus signals
are the same as the signals found on the ’386SX pro-
cessor, but the PC-104 bus on the SBC in the lab only
supports an 8-bit data bus (D7 to D0) and a 20-bit ad-
dress bus (A19 to A0).

In this lab you will use an FPGA to develop a pe-
ripheral device that interfaces to the SBC through the
PC-104 bus. We will only use a subset of these bus
signals: the data bus (D7 to D0), the LS 10 bits of the
address bus (A9 to A0), and the IOW* signal. The
IOW* signal is generated by combining the CPU’s
M/IO* and W/R* signals to create a signal (strobe)
that is low only during a write cycle to the I/O space.

Interconnection Board

Connections between the PC-104 bus and the
FPGA’s pins are made by inserting jumper wires
on two solderless prototyping board. As shown in
the diagram below, the five holes on each horizontal
row of the prototyping board are connected together.

lab2.tex 1

Each row of five holes is also connected (under the
board) to either a PC-104 bus signal or to an FPGA
pin. The holes on the left rows connect to PC-104
bus signals and the holes on the right rows connect
to FPGA pins.

FPGA pins signals

these pins
connected
 together

these pins
connected
 together

There are two interconnect boards. The left in-
terconnect board is used to connect the PC-104 data
and address bus and the board on the right is used to
connect the memory/I/O read/write strobes and the
interrupt request lines.

The table below shows the PC-104 signals and the
FPGA pins that are connected to each row of the in-
terconnect board. The rows are numbered starting at
1 for the top row.

Left Board Right Board
Row PC-104 FPGA PC-104 FPGA

Signal Pin Signal Pin
1 D7 113
2 D6 114
3 D5 115
4 D4 116
5 D3 117 IOW* 157
6 D2 118
7 D1 119
8 D0 120

21 A9 138
22 A8 139
23 A7 141
24 A6 142
25 A5 143
26 A4 144
27 A3 146
28 A2 147
29 A1 148
30 A0 149

The FPGA connections to the LED are given in

the previous lab.
The .acf configuration file is a text file. It may

be easier to edit the this file with a text editor when
entering the pin assignments rather than using the
dialog box. You can cut-and-paste the pin assign-
ment section from the sample .acf file available on
the course Web page. Don’t edit the .acf file while
Max+PlusII is running or your changes may be over-
written.

The Lab PC and Software

The lab PC will be used to:

synthesize the VHDL code and configure the
FPGA using the Max+PlusII software

edit the program using Notepad and assemble it
using the free “valarrow” assembler and linker

download the program to the SBC, run it and
enter the digit to be displayed using the Hyper-
term terminal emulator

Pre-Lab Assignment

Before the lab you must write, assemble and test (to
the extent possible) the utility program. You must
also design the circuit and test it by simulating its
operation. The TA will ask to see your assembler
and VHDL code and the simulation waveforms at the
start of the lab.

Assembly Language Program

Write an 8088 assembly-language program that does
the following:

loads the AH register with the value 1 and ex-
ecutes software interrupt 21H to request that
DOS read a character from the standard input
(keyboard) and return the ASCII value of the
character in the AL register

subtracts the ASCII value for the character ’0’
(zero) from the returned value

outputs this number to I/O port 220H

executes software interrupt 20H to return con-
trol back to DOS

2

The instructions for downloading and using the
free “valarrow” assembler are available on the course
web page. Download the assembler from the course
web page and assemble the code to create an exe-
cutable .COM file.

Run the program under DOS. The program should
simply return control back to DOS. If your operating
system has memory protection (e.g. Windows NT) or
port 220H is used by a peripheral on your computer
the computer may give you an error message or your
computer may crash. In this case comment out the
OUT instruction and test the rest of the code.

VHDL Code

Write a VHDL description for the circuit shown be-
low:

m
ul

tip
le

xe
r

address
decoder

re
gi

st
er

IOW*

LE
D

 d
ec

od
er

data bus

address
 bus

LE
D

8

10

2 7

The inputs are the LS 10 bits of the address bus1,
the 8 bits of the data bus, and the IOW* write strobe.
The outputs are the seven LED segments as in the
previous lab.

Your VHDL code should use the IOW* signal as if
it were a clock. Use the rising edge of IOW* to load
the register. The value loaded into the register should
be either the value on the data bus (if the value of the
address bus is 220H) or else the current value of the
register. The register should be 8 bits wide (although
only two bits are actually required and the synthe-
sizer will warn you that the other bits are not being
used). Do not include the address decoding func-
tion in the process statement (i.e. do not “gate the
clock”). You can probably re-use the LED decoder
code from the previous lab.

Create simulation test waveforms that demonstrate
the following:

an I/O write to address 220H changes the LED
output to the correct value

1The original IBM PC design only decoded the LS 10 bits of
I/O port addresses so all PC-compatible designs restrict them-
selves to using only the first 1024 ports.

I/O writes of all four valid values (0-3) generate
the correct LED outputs

an I/O write of a value to address 21FH does not
affect the LED output

Compile and simulate your VHDL description as
described in the previous lab.

Print and Copy Files

Save the files projectname.asm (assembly language
source code), projectname.com (DOS executable),
projectname.acf (device and pin assignments), pro-
jectname.vhd (VHDL code), and projectname.scf
(test waveforms) to a floppy disk to bring it with you
to the lab. Print out the assembler and VHDL code
and the simulator output waveforms.

Lab Procedure

Connect the PC-104 bus signals to the FPGA pins
on the interconnect board as described above. Use
the short 22-gauge jumper wires provided in the lab.
You will need 10 jumpers for the address bus, 8 for
the data bus (although only two are really used in this
lab), and one for the IOW* strobe. Double-check
your connections and turn on the power.

Compile your VHDL code if you haven’t already
done so, and configure the FPGA as described in the
previous lab.

Assemble and link your assembly code if you
haven’t already done so. All of your files should be
stored in the c:\max2work directory.

Run the Windows Hyperterm program (under
the Start|Accessories|Communication menu).
Click on the ELEC379 icon2. Press the reset button
on the interconnect board (top left corner). The SBC
will reboot and display a menu. Enter ‘x’ to exit the
start-up menu.

You can now issue DOS commands to the DOS
operating system running on the SBC (e.g. DIR, CD,
PATH, etc). To download your program to the SBC,
run the “dl” (download) command on the SBC. The

2If there is no such icon, create a new configuration using the
Connect option “direct to COM1” with configuration settings of
9600 bps, 8 data bits, no parity, 1 stop bit and xon/xoff flow
control).

3

SBC will output junk to the screen. Use the Hypert-
erm menu option Transfer|Send File to bring up
a dialog box. Select your .com file and download it.
The file will be transferred between the development
PC and the SBC over the serial port. The negotiation
between the two PCs will take 10 to 15 seconds and
the transfer a few seconds more. When the transfer
is complete you will be returned to the SBC’s DOS
prompt.

Run your program on the SBC. It should wait for
you to type in a digit, display the digit on the LED
and then return control back to DOS.

When your device is working properly, ask the TA
to check your work. He will make sure your device
works as required and ask you one or two questions
to verify your understanding of the material.

Report

Submit a short report with a written description of
your circuit. Include a block diagram showing the
connections between the PC-104 bus, the FPGA and
the LED, a listing of your assembly-language pro-
gram, the VHDL code and a printout of the simula-
tion waveforms that demonstrate correct operation of
your device.

4

