
ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

1998/99 WINTER SESSION, TERM 1

Assignment 3 - Appendix A
Hints for Assignment 3

Hints

A VHDL description for the RAM has been placed
on the Web page. You may use this description if you
add comments to it.

The design of this CPU allows one instruction to
be executed per clock cycle. This means the instruc-
tion decoder is a combinational circuit, not a state
machine.

If you are using the Sun workstations to do
this assignment you will need to ask Rob Ross
(robr@ee.ubc.ca) to create a new directory for you
where you can work. This directory will not be
backed up so you will be responsible for backing up
the contents onto a floppy.

The compiler’s error message are sometimes
vague as to the cause and location of the error. If the
built-in help does not explain the cause of the prob-
lem you will have to remove (comment out) sections
of the code to identify the location and then try dif-
ferent alternatives until the error message disappears.

The MaxPlusII VHDL analyzer doesn’t con-
sider attributes of variables to be “locally
static.” For example, if a is signal of type
dword you must use the expression: a =
conv unsigned(0,dword’length) rather than
a = conv unsigned(0,a’length). Because of
this bug you may include numeric constants in the
code, e.g. a = conv unsigned(0,5).

Remember that VHDL is very strict about operand
types and lengths. As stated above, you may
not get meaningful error messages from the com-
piler. You will have to make frequent use of the
conv integer(), conv unsigned(), unsigned(),
and std logic vector() conversion functions. For
example, the and and not operators are only defined
on std logic vector types and you need to convert
integer constants to unsigned constants in order to
use the unsigned addition operator (+).

You may want to choose the types to be used for
all of the entity inputs and outputs before you start
coding.

Corrected Assembly-Language Code

The program given in the assignment is wrong (the
line numbers are wrong and the CPU has no JNZ in-
struction). The following listing is correct. It loads
the accumulator with -3, increments it three times
until it becomes non-negative and then loops forever
on the last line. The code fragment shown below has
been assembled into a format suitable for including
in a selected assignment:

Instruction Address Opcode Operand
"01000000" when 0, -- LOADI 0
"00100000" when 1, -- STORE 0
"01000001" when 2, -- LOADI 1
"00100001" when 3, -- STORE 1
"01000010" when 4, -- LOADI 2
"10000000" when 5, -- NOT
"01100001" when 6, -- ADD 1
"11100110" when 7, -- JN 6
"11001000" when 8, -- JZ 8

Data Path Diagrams

The following diagrams show the structure of the five
entities in the computer. Although the same informa-
tion is available in text form in the assignment, dia-
grams may make it easier to visualize the operation
of the computer. The top-level entity (not shown)
simply instantiates one instance of each of the other
five blocks.

asg3a.tex 1

PC Datapath

clock

 address field of
current instruction

PC program
counter+1

 PC
operation
 code

ROM

current
instruction

current
 PC ROM

ad
dr

es
s

da
ta

Controller

A operation code

PC operation code

write

instruction
 decoderzero

negative

 opcode field of
current instruction

RAM

ad
dr

es
s

da
ta

 o
ut

da
ta

 in
w

rit
e

RAM

clock

from ALU
 output

 from
decoder

to ALU
input

address field
 of current
 instruction

A Datapath

add

and

not

A

clock

data memory out

A(7:0) = 0

A(7) = 1

zero

negative

 address field of
current instruction

data memory
in

A operation
 code

2

