Solutions to Assignment 2

Question 1

We could look up each character in the Unicode character tables (e.g. at unicode.org) and convert to UTF8. More simply we can paste the characters into a UTF-8 encoded file (the default encoding in most cases) and view the values of the bytes with a hex editor such as hexedit.

The following command does the same under Unix:
echo -n "Правда" | od -t x1
which prints the following hex values:
d0 9f d1 80 d0 b0 d0 b2 d0 b4 d0 b0

Question 2

An $8 B / 10$ B outputs 10 bits for every 8 input bits.
According to the referenced encoding method, the LS 5 bits are encoded to 6 bits and the MS 3 bits are encoded to 4 bits.

For an output of 1101011100 the 6b output (abcdei) is 110101 which corresponds to D. 04 for $\mathrm{RD}=-1$ and corresponds to input (EDCBA) of 00100 (m.s. to l.s. bit). The $3 \mathrm{~b} / 4 \mathrm{~b}$ output (fghj) for $\mathrm{RD}=-1$ is 1100 D.x. 3 which corresponds to an input (HGF) of 011. Thus the input was 01100100 or 0x64.

For an output of 0110000100 the 5b/6b output, 011000 is D .00 for $\mathrm{RD}=+1$ and corresponds to input of 00000 . The $3 \mathrm{~b} / 4 \mathrm{~b}$ output for $\mathrm{RD}=+1$ is 0100 D.x. 0 which corresponds to an input of 000 . Thus the input was 00000000 or 0×00.

Question 3

The voltage relative to ground on the first conductor can be represented as the vector $2 \angle 90^{\circ}$ and the second as $1 \angle 180^{\circ}$.

The common-mode signal is the average of the two. Using vector addition as shown below the common mode signal is $\sqrt{\frac{5}{4}} \angle 117^{\circ}$.

The differential signal is the difference between the two. Using vector addition as shown below the differential signal is $\sqrt{5} \angle 63^{\circ}$:

For the equation $A \cos (2 \pi f t+\theta)$ with $f=100$, the common-mode signal has $A=\sqrt{\frac{5}{4}}$ and $\theta=117^{\circ}$. For the difference signal $A=\sqrt{5}$, and $\theta=63^{\circ}$.

Question 4

(a) The entropy of the source in bits per message is:

$$
\sum_{i=1}^{8}-P_{i} \log _{2} P_{i}=\sum_{i=1}^{8} \frac{i}{2^{i}}
$$

which can be evaluated in Octave:

```
i=1:8
sum(i./2.^i)
ans = 1.9609
```

(b) If each message is encoded using 3 bits per message and 1 million messages per second are transmitted, the data rate over the channel is $3 \mathrm{Mb} / \mathrm{s}$.
(c) If the best possible compression method is applied before the data is transmitted over the channel then the data rate will be the information rate, or $1.96 \mathrm{Mb} / \mathrm{s}$.

Question 5

If one user uses half of of the time slots, then the remaining three users share one time slot per $200 \mu \mathrm{~s}$, or one time slot per user per $600 \mu \mathrm{~s}$. With 10% of the slots lost and 96 bits per slot, each low-priority user would see a throughput of $0.9 \times 96 / 600 \mu \mathrm{~s}=114 \mathrm{~kb} / \mathrm{s}$.

