
ELEX 3525 : Data Communications
2018 Winter Term

Data Transmission over Bandlimited Channels

This lecture describes limits on the maximum symbol and information rate for band-limited channels.
After this lecture you should be able to: determine if a channel meets theNyquist no-ISI criteria and, if so, themaximum signalling rate
without ISI; determine themaximum error-free information rate over the BSC and AWGN channels; determine the specific conditions
under which these two limits apply. You should be able to perform computations involving the OFDM symbol rate, sampling rate,
block size and guard interval.

Introduction

All practical channels are band-limited – either low-
pass or band-pass. There are two theorems, the
Nyquist no-ISI criteria and Shannon’s capacity the-
orem, that provide some guidance about maximum
data rates that can be achieved over a bandlimited
channel.

Inter-Symbol Interference

Bandwidth-limited low-pass channels attenuate
higher-frequency components of a signal. This
“rounds off” pulse shapes which increases their rise
and fall times and extends their durations. Each
symbol then extends into subsequently-transmitted
symbols. This causes one symbol to interfere with
subsequently-transmitted symbols. This is called
inter-symbol interference (ISI).
Exercise 1: Draw a square pulse of duration 𝑇. Draw the
pulse after it has passed through a linear low-pass channel
that results in rise and fall times of 𝑇/3. Draw the output
for an input pulse of the opposite polarity. Use the princi-
ple of superposition to draw the output of the channel for a
positive input pulse followed by a negative input pulse.

Nyquist no-ISI Criteria in Time

Consider a system that transmits symbols that are
infinitely-short pulses of different amplitudes. A
low-pass channel will limit the rise time of these im-
pulses and cause them to be extended in time. How-
ever, if the response of the channel to these impulses
is zero after one symbol period then the impulse will
not cause ISI to the next impulse. And if the chan-
nel impulse response passes through zero at all future
multiples of the symbol period then the impulses will

not interfere with subsequent impulses. This is the
Nyquist no-ISI condition stated in the time domain.

Exercise 2: What is the impulse response of a channel that
does not alter its input? Does this impulse response meet
the Nyquist condition? Will it result in ISI?

An example of an impulse response that meet this
criteria is the sinc() function:

ℎ(𝑡) = sin(𝜋𝑡/𝑇)
𝜋𝑡/𝑇

which has value 1 at 𝑡 = 0 and 0 at multiples of 𝑇.
Exercise 3: Draw the impulse response of a channel that
meets the Nyquist condition but is composed of straight
lines.

Nyquist no-ISI Criteria in Frequency

It is possible to determine the conditions for a chan-
nel’s transfer function to result in no ISI. A common
way of stating this condition is that the channel’s fre-
quency response must have odd symmetry around
half of the symbol frequency1 ( 1

2𝑇 ):

𝐻( 12𝑇 + 𝑓) + 𝐻∗( 12𝑇 − 𝑓) = 1 for 0 ≤ |𝑓| ≤ 1
2𝑇

1The asterisk indicates complex conjugate. This can be ig-
nored for real(izable) baseband channels.
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Just as there could be many impulse responses that
are zero at multiples of the symbol period, there are
many transfer functions that result in no ISI. For ex-
ample, the following two straight-line transfer func-
tions meet the no-ISI condition2:

The “brick-wall” filter (blue) has a response that is
1 below half of the symbol rate (12 ⋅

1
𝑇 =

1
2𝑇 where 1

𝑇 is
the symbol rate) and zero above that. Although such
a filter would have theminimumbandwidth required
to meet the Nyquist condition for a symbol period
𝑇, it is not physically realizable and has other prob-
lems as described below. The filter with the straight-
line transfer function is more practical but still dif-
ficult to implement. A common and more practical
transfer function is the so-called raised-cosine func-
tionwhich is a half-cycle of a cosine function offset to
have a minimum value of zero and centered around
half of the symbol rate:

Note that it is the symmetry around the frequency
1
2𝑇 that ensures there will be no ISI rather than the
exact filter shape. Thus we are free to implement
other transfer functions if they make the implemen-
tation easier.
Exercise 4: Draw the magnitude of a raised-cosine transfer
function that would allow transmission of impulses at a rate
of 800 kHz with no interference between the impulses.

Oftenwe cannot control over the impulse response
or transfer function of the channel and we need to
add filtering at the transmit or receive sides of the
channel so that the overall transfer function meets

2For simplicity we only show one component (the real or
imaginary portion) of the transfer function.

the Nyquist criteria. This is called equalization and
is described below.

Pulse-Shaping Filter

Note that the no-ISI criteria ensures that a channel
produces no ISI when transmittign impulses, not for
the square pulses typically used by line codes.

However, we can treat the transmitter as includ-
ing a filter that converts impulses to pulses. We
then consider that the overall channel includes this
(im)pulse-shaping filter. So for transmitters that gen-
erate pulses it is the combination of this hypotheti-
cal impulse-shaping filter and the channel that has to
meet the Nyquist criteria:

meets Nyquist no-ISI
         criteria

pulse-shaping
filter

channel

   no ISI at
t=0, T, 2T, . . .

h(t)

T

transmitter

data
equalizer

Exercise 5: Draw the impulse response of a filter than con-
verts input impulses to pulses of duration𝑇? Draw the signal
after the pulse-shaping filter in the diagram above.

Equalization

To avoid ISI, the total channel response including
transmit filters, the channel and the receiver filter(s)
have to meet the Nyquist no-ISI condition.

When the channel by itself doesn’t meet the no-
ISI conditions, the transmitter and/or receiver can
use a filter called an equalizer that modifies the over-
all transfer function to ensure the no-ISI condition is
met.

Transmitter and receiver filters typically have
other functions beside equalization. For example, the
transmit filter may limit the bandwidth of the trans-
mitted signal to limit interference to users on adja-
cent channels. The receiver filter may filter out noise
and interference fromadjacent channels and thus im-
prove the SNR and SIR. The communication system
designer would design the transmitter and receiver
filters to meet both the filtering and equalization re-
quirements.
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A common situation is a flat channel where inter-
ference is not an issue. In this case a reasonable ap-
proach is to put half of the filtering at the transmitter
and half at the receiver. In order to achieve an overall
raised cosine transfer function, each side has to use
a “root raised cosine” (RRC) transfer function. The
product of the two filters is thus the desired raised-
cosine function which meets the no-ISI condition.

Equalizers also have to compensate for the (imag-
inary) pulse-shaping filter. Since the pulse-shaping
filter has a low-pass (sinc(𝑓)) shape, the equalizer re-
sponse hasmore gain at higher frequencies that a true
raised-cosine function 3.

Excess Bandwidth

Channels can have different transitions between the
passband and the stopband of the transfer function
while still meeting the no-ISI conditions.

A parameter, 𝛼, which defines how much wider
the channel is than the minimum is called the “excess
bandwidth” parameter. It is defined as:

𝛼 = total bandwidth −minimum bandwidth
minimum bandwidth

for example, if𝐵 is the maximum channel bandwidth
(frequency at which 𝐻(𝑓) = 0) and 𝑇 is the sym-
bol period so that 1

2𝑇 is the minimum possible band-
width, then 𝛼 = 𝐵−1/(2𝑇)

1/(2𝑇) = 2𝐵𝑇 − 1.
Why would we make the bandwidth larger than

necessary? The value of 𝛼 affects the shape of the im-
pulse response. Larger values of 𝛼 result in less over-
shoot andmake the received pulsemore “square” and
this in turn makes the receiver less sensitive to varia-
tions inwhen the receiver samples the received signal.

The following diagram shows how 𝛼 for a raised-
cosine transfer function affects the impulse response:

3Sometimes called “sinc compensation.”

Larger values of excess bandwidth (wider band-
width channels) results in less “ringing” of the im-
pulse response which in turn reduces the amount of
ISI near the sampling point. This makes the receiver
less sensitive to errors in where (when) it samples the
received signal.

Nyquist Criteria and Bit Rate

Note that the symbol rate limitations defined by the
Nyquist criteria do not determine the maximum bit
rate that can be achieved over a channel – they only
determine the maximum symbol rate without ISI.

We can increase the bit rate by increasing the num-
ber of bits per symbol (e.g. by using multiple levels).
For example, using symbols each of which could be at
one of 1024 levelswe can transmit 10 bits per symbol.
Exercise 6: A channel has a 3 kHz bandwidth andmeets the
Nyquist non-ISI conditions with 𝛼 = 1. How many levels are
required to transmit 24 kb/s over this channel using multi-
level signalling?

We can also design receivers that recover the
transmitted data even in the presence of ISI. For ex-
ample, if we know the symbols that have been trans-
mitted in the past and we know the channel impulse
response then we can predict the ISI and subtract
it from the current received symbols. This is called
decision-feedback equalization (DFE).
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Adaptive Equalizers

In many communication systems the transfer func-
tion of the channel cannot be predicted ahead of
time. One example is a modem used over the pub-
lic switched telephone network (PSTN). Each phone
call will result in a channel that includes different
“loops” and thus different frequency responses. An-
other example is multipath propagation in wireless
networks. The channel impulse response changes as
the receiver, transmitter or objects in the environ-
ment move around.

To compensate for the time-varying channel im-
pulse response the receiver can be designed to adjust
the receiver equalizer filter response using various al-
gorithms.

OFDM

An alternative to equalization is a technique called
Orthogonal Frequency Division Multiplexing
(OFDM). An OFDM transmitter collects a group
of 𝑁 symbols at a time and uses them to modulate
𝑁 “subcarriers” (modulation is covered in another
course). These subcarriers are transmitted in parallel
over the same time duration that would have been
required to transmit the 𝑁 symbols serially. The net
effect is to reduce the symbol rate by a factor 𝑁 but
with no impact on the overall bit rate.

We usually insert a “guard time” (or “guard inter-
val”) in-between symbols. Its duration is longer than
the duration of the channel impulse response.

Since no data is transmitted during the guard time,
this reduces the average data rate. However, the
guard time is typically a small fraction of the OFDM
symbol duration and so the impact on the overall
throughput is relatively small.

Rather than transmittingnothing during the guard
interval, a small part of the end of the block of𝑁 sam-
ples is copied to the start of the symbol and transmit-
ted during the guard time. This is called a “cyclic” or
“periodic” extension.

The value of𝑁 is typically a power of 2 to allow ef-
ficient implementation using the Fast Fourier Trans-
form (FFT) algorithm.

OFDM has become more popular than adaptive
equalization because it is simpler to implement and
more robust. This is partly because it is not neces-
sary to estimate the channel to correct for ISI. OFDM
is used by most ADSL, WLAN and 4G cellular stan-
dards.
Exercise 7: The 802.11g WLAN standard uses OFDM with
a sampling rate of 20 MHz, with𝑁 = 64 and guard interval
of 0.8𝜇𝑠. What is the total duration of each OFDM block,
including the guard interval? How long is the guard time?

Shannon Capacity

The Shannon Capacity of a channel is the informa-
tion rate above which it is not possible to transmit
data with an arbitrarily low error rate.

One example of a channel is the Binary Symmetric
Channel (BSC). This channel transmits discrete bits
(0 or 1) with a bit error probability (BER) of 𝑝. The
capacity of the BSC in units of information bit per
“channel use” (transmitted bit) is :

𝐶 = 1 − (−𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝))

which is 0 for 𝑝 = 0.5 (when each transmitted bit
is equally likely to be received right or wrong) and 1
when 𝑝 = 0 (the error-free channel) or when 𝑝 = 1
(a perfectly inverting channel).
Exercise 8: What is capacity of a binary channel with a BER
of 1

8 (assuming the same BER for 0’s and 1’s)?
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For a continuous channel corrupted by Additive
White Gaussian Noise (AWGN), the capacity can be
shown to be:

𝐶 = 𝐵 log2 (1 +
𝑆
𝑁)

where 𝐶 is the capacity (b/s), 𝐵 is the bandwidth (Hz)
and 𝑆

𝑁 is the signal to noise (power) ratio.
The Shannon limit does not say that you can’t

transmit data faster than this limit, only that if you
do, you can’t reduce the error rate to an arbitrar-
ily low value. However, in practice, attempting to
transmit at information rates above capacity results
in high error rates.
Exercise 9: Can we use compression to transmit informa-
tion faster than the (Shannon) capacity of a channel? To
transmit data faster than capacity? Explain.

Shannon’s work also does not specify how to
achieve capacity. However, Shannon’s work does
hint that using error-correcting codes with long
codewords (to be discussed later) should allow us to
achieve arbitrarily-low error rates as long as we limit
the information rate to less than the channel capacity.
Exercise 10: What is the channel capacity of a 4 kHz channel
with an SNR of 30dB?

Some systems using modern forward error-
correcting (FEC) codes such as Low Density Parity
Check (LDPC) codes can communicate at very low
error rates over AWGN channels with SNRs only a
fraction of a dB more than the minimum required by
the capacity theorem.
Exercise 11: What do the Nyquist no-ISI criteria and the
Shannon Capacity Theorem limit? What channel parameters
determine these limits?
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