Solutions to Final Exam

Question 1

If four messages have probabilities $0.25,0.25,0.125$ and 0.375 the the entropy of the source is:

$$
H=\sum_{i}\left(-\log _{2}\left(P_{i}\right) \times P_{i}\right) \text { bits/message }
$$

which for $P_{i}=0.25,0.25,0.125$ and 0.375 evalutes to:

$$
\begin{aligned}
H= & -0.25 \log _{2}(0.25)-0.25 \log _{2}(0.25) \\
& -0.125 \log _{2}(0.125)-0.375 \log _{2}(0.375) \\
& \approx 1.9 \mathrm{bits} / \text { message }
\end{aligned}
$$

as computed by the following spreadsheet:

$\mathrm{P}(\mathrm{i})$	$-\mathrm{P}(\mathrm{i})^{\star} \log 2(\mathrm{Pi})$
0.25	0.5
0.25	0.5
0.125	0.375
0.375	0.531
sum=	1.906

Since the message rate is 1000 messages/second (1 ms per message), the information rate of the source is $1906 \mathrm{bits} /$ second.

This information rate is also the bit rate that results when the best possible compression is used.

Question 2

The bits transmitted by the given RS-232 waveform are drawn below:

Since the bits are transmitted from 1.s. to m.s. bit, the value transmitted was thus $01001001_{2}=0 \times 49$. This corresponds to the letter 'I'.

Question 3

A low-pass channel with a gain of $0.5(-6 \mathrm{~dB})$ at a frequency of 0.6 MHz and that is symmetrical about that frequency will be able to pass signals at a symbol rate of twice that, $2 \times 0.6=1.2 \mathrm{MHz}$ without ISI.

If each symbol is a pulse that has one of 8 possible levels, then each symbol can represent $\log _{2}(8)=3$ bits and the data rate is $3 \times 1.2=3.6 \mathrm{Mbits} /$ second.

Question 4

The message polynomial $x^{5}+x^{2}+x+1$ represents the bit sequence 100111 and the generator polynomial $x^{2}+1$ the bit sequence 101 . The long division of the message by the generator polynomial is:

Since the remainder is zero, the channel did not introduce any errors.

Question 5

The Hamming distance, d, of a code with the two codewords 1001 and 0110 is the only Hamming distance, the number of bits that differ between 1001 and 0110 which is 4 (all the bits differ).

This code could detect $d-1=3$ errors and correct $\left\lfloor\frac{d-1}{2}\right\rfloor=\lfloor 1.5\rfloor=1$ error.

Since there are 2 codewords, each codeword represents (transmits) $\log _{2}(2)=1$ bits.

Question 6

The first six bytes of an Ethernet frame following the SFD are the destination address and the next six are the source address.

In this case the destination address is: bc:83:85:f9:7d:7c and the source address is: 00:1d:60:9f:21:94.

Question 7

(a) The maximum period of a PN sequence generated by a circuit using $m=12$ flip-flops is $2^{m}-$ $1=2^{12}-1=4095$ bits.
(b) The time and amplitude of noise caused by lightning from storms would be unpredictable so it would be considered a random rather than pseudo-random signal.
(c) A system transmitting data in the form of frames, such as WiFi, is more likely to use an additive scrambler (mistakenly called multiplicative in the exam question) rather than a convolutional scrambler because the frame boundaries can define the start of the scrambling sequence.
Since the question used the wrong terminology, I did not mark this part and the maximum mark for this question was 7.
(d) It would be most appropriate to use go-back-N ARQ for a communication link with a delay that is long relative to the frame duration (such as the 2.5 second round-trip propagation delay to the moon relative to 1 ms frame duration) and a low error rate (every 10 years in the example) because it would provide high throughput (assuming $N>2500$) with lower complexity that selective-repeat ARQ.
(e) A communication system with devices that have a range of about 3 m would be considered a PAN since this is much less than the typical range of a LAN (about 100 m).

