Solutions to Midterm Exam

Question 1

(a) The Unicode codepoints were U+0A90 and U+0A91. In binary these are 0000101010010000 and 0000101010010000.
(b) According to the table (Table 3-6) in the Unicode standard (see Lecture 1), the UTF-8 encoding for these values requires 3 bytes.
(c) What are the values of those bytes in hexadecimal?

The bit allocations are:
$\mathrm{z}=0000$
$\mathrm{y}=101010$
$\mathrm{x}=010000$ or $\mathrm{x}=010001$
so the three bytes are: 11100000,10101010 , and 10010000 (or 10010001) which are 0xe0, 0xaa, and $0 x 90$ (or 0x91) in hex.

Question 2

The character \{ has an ASCII code 0x7b (binary 01111011) and was to be transmitted at $38.4 \mathrm{~kb} / \mathrm{s}$ with 8 bits, even parity.

The character \} has an ASCII code 0x7d (binary 01111101) and was to be transmitted at $76.8 \mathrm{~kb} / \mathrm{s}$ with 7 bits, even parity.

On an asynchronous serial interface ("RS-232") the bits are sent in order from LS to MS bit and a 1 is represented as a low voltage level.

For even parity the number of ones must be even. For both characters the number of l's is 6 which is already an even number so a zero parity bit is used to keep the number of one's an even number.

The bit duration (period) is the inverse of the bit rate (frequency). For a bit rate of $38.4 \mathrm{~kb} / \mathrm{s}$ the period is $\frac{1}{38400}=26 \mu \mathrm{~s}$. For a bit rate of $76.8 \mathrm{~kb} / \mathrm{s}$ the period is $\frac{1}{76800}=13 \mu$ s.

The waveform would look as follows:

Question 3

(a) The velocity of propagation in a cable is given by:

$$
v=\frac{1}{\sqrt{L C}}
$$

which for this cable with $\mathrm{L}=67 \mathrm{pF}$ and $\mathrm{C}=0.43 \mu \mathrm{H}$ gives $v=1.86 \times 10^{8} \times 1 \mathrm{~m} / \mathrm{s}$ (the factor 1 is for the cable length, 1 m).

This is equal to the velocity factor multiplied by the velocity of light, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$:

$$
c \times V F=\frac{c}{\sqrt{\varepsilon_{r}}}=v=1.86 \times 10^{8}
$$

We can solve for $\varepsilon_{r}=\left(\frac{3 \times 10^{8}}{1.86 \times 10^{8}}\right)^{2}=2.6$.
(b) From the diameters of the inner and outer conductor diameters and ε_{r} we can compute the characteristic impedance:

$$
Z_{0} \approx \frac{60}{\sqrt{2.6}} \ln \left(\frac{5}{3.5}\right)=13.3 \Omega
$$

(a) The normalized error threshold level is $t=$ $\frac{v-\mu}{\sigma}=\frac{50-0}{25}=2$.
(b) The error rate, P_{e} is the probability that the signal exceeds the normalized threshold. This is $1 \mathrm{mi}-$ nus the probability that the signal is less than the threshold which can be found from the Normal distribution curve on page 7 of the notes for Lecture 4 or using a calculator as 0.98 . So the probability of error, is about 2%.

