Solutions to Assignment 2

Question 1

The group delay variation should be significantly less than the symbol period to avoid ISI. If the symbol rate is 1 MHz , the symbol period is $1 \mu \mathrm{~s}$ and the channel group delay variation should be significantly less than this. An RF amplifier with a group delay variation of up to 1μ s would result in significant ISI and would not be suitable.

Question 2

THD is defined as:

$$
\mathrm{THD}=\sqrt{\frac{P_{1}+P_{2}+P 3+\ldots}{P_{0}}}
$$

where the P_{i} it the power of the i th harmonic and P_{0} is the power of the fundamental.

The following table shows the computation of the power of the fundamental, of the harmonics, and the THD (about 37\%):

i	P(i) (dB)	P(i) (W)
0	0	1
1		0.032
2	-10	0.100
3	-30	0.001
4	-25	0.003
sum(i=1 to 4)		0.136
THD=		37\%

Question 3

(a) The integral of a probability density is unitless so the units on the vertical axis should be $\frac{1}{\text { volts. }}$.
(b) The area under the probability density curve is always 1 (the signal must always have some voltage).
(c) The probability that the noise level is greater than 1 is the area under the curve to the right of 1 . This is the area of the shaded triangle shown below:

The maximum of the curve $\left(h_{1}\right)$ can be found by equating the area of the curve (two triangles) to one: $2 \times \frac{1}{2} \times 3 \times h_{1}=1$ or $h_{1}=\frac{1}{3}$.
The height of the shaded triangle can be found using the ratio of the triangle widths and heights: $h_{1} / 3=h_{2} / 2$ or $h_{2}=\frac{2 \times 1}{3 \times 3}=2 / 9$.
The probability of the noise being greater than 1 V is the area of the shaded rectangle or $\frac{1}{2} \times 2 \times$ $\frac{2}{9}=\frac{2}{9} \approx 22 \%$.

Question 4

Differential encoding encodes a ' 1 ' as a change from the previous symbol and ' 0 ' as no change. For a Manchester line code there are two symbols: low-tohigh and high-to-low.

Differential Manchester line coding encodes each 1 as the opposite transition as the previous symbol and each 0 as the same transition as the previous symbol. The waveform would thus look as follows for the bit sequence 10110111 if the previous symbol was a high-to-low transition:

Question 5

The equation for a sine wave with an amplitude of 1 V and a frequency of 1 kHz is $v(t)=\sin (2 \pi f t)=$ $\sin (2 \pi 1000 t)$.

The slew rate is the derivative with respect to time. This is $2 \pi f \cos (2 \pi f t)$ and has a maximum value of $2 \pi f=6283 \mathrm{~V} / \mathrm{s}$ at $t=0$.

